forked from bartvdbraak/blender
645 lines
19 KiB
C++
645 lines
19 KiB
C++
/**
|
|
* Do translation/rotation actions
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "KX_ObjectActuator.h"
|
|
#include "KX_GameObject.h"
|
|
#include "KX_PyMath.h" // For PyVecTo - should this include be put in PyObjectPlus?
|
|
#include "KX_IPhysicsController.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Native functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
KX_ObjectActuator::
|
|
KX_ObjectActuator(
|
|
SCA_IObject* gameobj,
|
|
KX_GameObject* refobj,
|
|
const MT_Vector3& force,
|
|
const MT_Vector3& torque,
|
|
const MT_Vector3& dloc,
|
|
const MT_Vector3& drot,
|
|
const MT_Vector3& linV,
|
|
const MT_Vector3& angV,
|
|
const short damping,
|
|
const KX_LocalFlags& flag
|
|
) :
|
|
SCA_IActuator(gameobj),
|
|
m_force(force),
|
|
m_torque(torque),
|
|
m_dloc(dloc),
|
|
m_drot(drot),
|
|
m_linear_velocity(linV),
|
|
m_angular_velocity(angV),
|
|
m_linear_length2(0.0),
|
|
m_current_linear_factor(0.0),
|
|
m_current_angular_factor(0.0),
|
|
m_damping(damping),
|
|
m_previous_error(0.0,0.0,0.0),
|
|
m_error_accumulator(0.0,0.0,0.0),
|
|
m_bitLocalFlag (flag),
|
|
m_reference(refobj),
|
|
m_active_combined_velocity (false),
|
|
m_linear_damping_active(false),
|
|
m_angular_damping_active(false)
|
|
{
|
|
if (m_bitLocalFlag.ServoControl)
|
|
{
|
|
// in servo motion, the force is local if the target velocity is local
|
|
m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity;
|
|
|
|
m_pid = m_torque;
|
|
}
|
|
if (m_reference)
|
|
m_reference->RegisterActuator(this);
|
|
UpdateFuzzyFlags();
|
|
}
|
|
|
|
KX_ObjectActuator::~KX_ObjectActuator()
|
|
{
|
|
if (m_reference)
|
|
m_reference->UnregisterActuator(this);
|
|
}
|
|
|
|
bool KX_ObjectActuator::Update()
|
|
{
|
|
|
|
bool bNegativeEvent = IsNegativeEvent();
|
|
RemoveAllEvents();
|
|
|
|
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
|
|
|
|
if (bNegativeEvent) {
|
|
// If we previously set the linear velocity we now have to inform
|
|
// the physics controller that we no longer wish to apply it and that
|
|
// it should reconcile the externally set velocity with it's
|
|
// own velocity.
|
|
if (m_active_combined_velocity) {
|
|
if (parent)
|
|
parent->ResolveCombinedVelocities(
|
|
m_linear_velocity,
|
|
m_angular_velocity,
|
|
(m_bitLocalFlag.LinearVelocity) != 0,
|
|
(m_bitLocalFlag.AngularVelocity) != 0
|
|
);
|
|
m_active_combined_velocity = false;
|
|
}
|
|
m_linear_damping_active = false;
|
|
m_angular_damping_active = false;
|
|
m_error_accumulator.setValue(0.0,0.0,0.0);
|
|
m_previous_error.setValue(0.0,0.0,0.0);
|
|
return false;
|
|
|
|
} else if (parent)
|
|
{
|
|
if (m_bitLocalFlag.ServoControl)
|
|
{
|
|
// In this mode, we try to reach a target speed using force
|
|
// As we don't know the friction, we must implement a generic
|
|
// servo control to achieve the speed in a configurable
|
|
// v = current velocity
|
|
// V = target velocity
|
|
// e = V-v = speed error
|
|
// dt = time interval since previous update
|
|
// I = sum(e(t)*dt)
|
|
// dv = e(t) - e(t-1)
|
|
// KP, KD, KI : coefficient
|
|
// F = KP*e+KI*I+KD*dv
|
|
MT_Scalar mass = parent->GetMass();
|
|
if (mass < MT_EPSILON)
|
|
return false;
|
|
MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
|
|
if (m_reference)
|
|
{
|
|
const MT_Point3& mypos = parent->NodeGetWorldPosition();
|
|
const MT_Point3& refpos = m_reference->NodeGetWorldPosition();
|
|
MT_Point3 relpos;
|
|
relpos = (mypos-refpos);
|
|
MT_Vector3 vel= m_reference->GetVelocity(relpos);
|
|
if (m_bitLocalFlag.LinearVelocity)
|
|
// must convert in local space
|
|
vel = parent->NodeGetWorldOrientation().transposed()*vel;
|
|
v -= vel;
|
|
}
|
|
MT_Vector3 e = m_linear_velocity - v;
|
|
MT_Vector3 dv = e - m_previous_error;
|
|
MT_Vector3 I = m_error_accumulator + e;
|
|
|
|
m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv;
|
|
// to automatically adapt the PID coefficient to mass;
|
|
m_force *= mass;
|
|
if (m_bitLocalFlag.Torque)
|
|
{
|
|
if (m_force[0] > m_dloc[0])
|
|
{
|
|
m_force[0] = m_dloc[0];
|
|
I[0] = m_error_accumulator[0];
|
|
} else if (m_force[0] < m_drot[0])
|
|
{
|
|
m_force[0] = m_drot[0];
|
|
I[0] = m_error_accumulator[0];
|
|
}
|
|
}
|
|
if (m_bitLocalFlag.DLoc)
|
|
{
|
|
if (m_force[1] > m_dloc[1])
|
|
{
|
|
m_force[1] = m_dloc[1];
|
|
I[1] = m_error_accumulator[1];
|
|
} else if (m_force[1] < m_drot[1])
|
|
{
|
|
m_force[1] = m_drot[1];
|
|
I[1] = m_error_accumulator[1];
|
|
}
|
|
}
|
|
if (m_bitLocalFlag.DRot)
|
|
{
|
|
if (m_force[2] > m_dloc[2])
|
|
{
|
|
m_force[2] = m_dloc[2];
|
|
I[2] = m_error_accumulator[2];
|
|
} else if (m_force[2] < m_drot[2])
|
|
{
|
|
m_force[2] = m_drot[2];
|
|
I[2] = m_error_accumulator[2];
|
|
}
|
|
}
|
|
m_previous_error = e;
|
|
m_error_accumulator = I;
|
|
parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else
|
|
{
|
|
if (!m_bitLocalFlag.ZeroForce)
|
|
{
|
|
parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroTorque)
|
|
{
|
|
parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroDLoc)
|
|
{
|
|
parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroDRot)
|
|
{
|
|
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroLinearVelocity)
|
|
{
|
|
if (m_bitLocalFlag.AddOrSetLinV) {
|
|
parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else {
|
|
m_active_combined_velocity = true;
|
|
if (m_damping > 0) {
|
|
MT_Vector3 linV;
|
|
if (!m_linear_damping_active) {
|
|
// delta and the start speed (depends on the existing speed in that direction)
|
|
linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
|
|
// keep only the projection along the desired direction
|
|
m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
|
|
m_linear_damping_active = true;
|
|
}
|
|
if (m_current_linear_factor < 1.0)
|
|
m_current_linear_factor += 1.0/m_damping;
|
|
if (m_current_linear_factor > 1.0)
|
|
m_current_linear_factor = 1.0;
|
|
linV = m_current_linear_factor * m_linear_velocity;
|
|
parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else {
|
|
parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
}
|
|
}
|
|
}
|
|
if (!m_bitLocalFlag.ZeroAngularVelocity)
|
|
{
|
|
m_active_combined_velocity = true;
|
|
if (m_damping > 0) {
|
|
MT_Vector3 angV;
|
|
if (!m_angular_damping_active) {
|
|
// delta and the start speed (depends on the existing speed in that direction)
|
|
angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
|
|
// keep only the projection along the desired direction
|
|
m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
|
|
m_angular_damping_active = true;
|
|
}
|
|
if (m_current_angular_factor < 1.0)
|
|
m_current_angular_factor += 1.0/m_damping;
|
|
if (m_current_angular_factor > 1.0)
|
|
m_current_angular_factor = 1.0;
|
|
angV = m_current_angular_factor * m_angular_velocity;
|
|
parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
|
|
} else {
|
|
parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
CValue* KX_ObjectActuator::GetReplica()
|
|
{
|
|
KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName());
|
|
replica->ProcessReplica();
|
|
|
|
return replica;
|
|
}
|
|
|
|
void KX_ObjectActuator::ProcessReplica()
|
|
{
|
|
SCA_IActuator::ProcessReplica();
|
|
if (m_reference)
|
|
m_reference->RegisterActuator(this);
|
|
}
|
|
|
|
bool KX_ObjectActuator::UnlinkObject(SCA_IObject* clientobj)
|
|
{
|
|
if (clientobj == (SCA_IObject*)m_reference)
|
|
{
|
|
// this object is being deleted, we cannot continue to use it as reference.
|
|
m_reference = NULL;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void KX_ObjectActuator::Relink(GEN_Map<GEN_HashedPtr, void*> *obj_map)
|
|
{
|
|
void **h_obj = (*obj_map)[m_reference];
|
|
if (h_obj) {
|
|
if (m_reference)
|
|
m_reference->UnregisterActuator(this);
|
|
m_reference = (KX_GameObject*)(*h_obj);
|
|
m_reference->RegisterActuator(this);
|
|
}
|
|
}
|
|
|
|
/* some 'standard' utilities... */
|
|
bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type)
|
|
{
|
|
bool res = false;
|
|
res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX);
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Python functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Integration hooks ------------------------------------------------------- */
|
|
PyTypeObject KX_ObjectActuator::Type = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"KX_ObjectActuator",
|
|
sizeof(PyObjectPlus_Proxy),
|
|
0,
|
|
py_base_dealloc,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
py_base_repr,
|
|
0,0,0,0,0,0,0,0,0,
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
|
|
0,0,0,0,0,0,0,
|
|
Methods,
|
|
0,
|
|
0,
|
|
&SCA_IActuator::Type,
|
|
0,0,0,0,0,0,
|
|
py_base_new
|
|
};
|
|
|
|
PyMethodDef KX_ObjectActuator::Methods[] = {
|
|
{NULL,NULL} //Sentinel
|
|
};
|
|
|
|
PyAttributeDef KX_ObjectActuator::Attributes[] = {
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("force", -1000, 1000, false, KX_ObjectActuator, m_force, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalForce", KX_ObjectActuator, m_bitLocalFlag.Force),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("torque", -1000, 1000, false, KX_ObjectActuator, m_torque, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalTorque", KX_ObjectActuator, m_bitLocalFlag.Torque),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dLoc", -1000, 1000, false, KX_ObjectActuator, m_dloc, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalDLoc", KX_ObjectActuator, m_bitLocalFlag.DLoc),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dRot", -1000, 1000, false, KX_ObjectActuator, m_drot, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalDRot", KX_ObjectActuator, m_bitLocalFlag.DRot),
|
|
#ifdef USE_MATHUTILS
|
|
KX_PYATTRIBUTE_RW_FUNCTION("linV", KX_ObjectActuator, pyattr_get_linV, pyattr_set_linV),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("angV", KX_ObjectActuator, pyattr_get_angV, pyattr_set_angV),
|
|
#else
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("linV", -1000, 1000, false, KX_ObjectActuator, m_linear_velocity, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("angV", -1000, 1000, false, KX_ObjectActuator, m_angular_velocity, PyUpdateFuzzyFlags),
|
|
#endif
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalLinV", KX_ObjectActuator, m_bitLocalFlag.LinearVelocity),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalAngV", KX_ObjectActuator, m_bitLocalFlag.AngularVelocity),
|
|
KX_PYATTRIBUTE_SHORT_RW("damping", 0, 1000, false, KX_ObjectActuator, m_damping),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitX", KX_ObjectActuator, pyattr_get_forceLimitX, pyattr_set_forceLimitX),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitY", KX_ObjectActuator, pyattr_get_forceLimitY, pyattr_set_forceLimitY),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitZ", KX_ObjectActuator, pyattr_get_forceLimitZ, pyattr_set_forceLimitZ),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("pid", -100, 200, true, KX_ObjectActuator, m_pid, PyCheckPid),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("reference", KX_ObjectActuator,pyattr_get_reference,pyattr_set_reference),
|
|
{ NULL } //Sentinel
|
|
};
|
|
|
|
/* Attribute get/set functions */
|
|
|
|
#ifdef USE_MATHUTILS
|
|
|
|
/* These require an SGNode */
|
|
#define MATHUTILS_VEC_CB_LINV 1
|
|
#define MATHUTILS_VEC_CB_ANGV 2
|
|
|
|
static int mathutils_kxobactu_vector_cb_index= -1; /* index for our callbacks */
|
|
|
|
static int mathutils_obactu_generic_check(PyObject *self_v)
|
|
{
|
|
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>BGE_PROXY_REF(self_v);
|
|
if(self==NULL)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int mathutils_obactu_vector_get(PyObject *self_v, int subtype, float *vec_from)
|
|
{
|
|
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>BGE_PROXY_REF(self_v);
|
|
if(self==NULL)
|
|
return 0;
|
|
|
|
switch(subtype) {
|
|
case MATHUTILS_VEC_CB_LINV:
|
|
self->m_linear_velocity.getValue(vec_from);
|
|
break;
|
|
case MATHUTILS_VEC_CB_ANGV:
|
|
self->m_angular_velocity.getValue(vec_from);
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int mathutils_obactu_vector_set(PyObject *self_v, int subtype, float *vec_to)
|
|
{
|
|
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>BGE_PROXY_REF(self_v);
|
|
if(self==NULL)
|
|
return 0;
|
|
|
|
switch(subtype) {
|
|
case MATHUTILS_VEC_CB_LINV:
|
|
self->m_linear_velocity.setValue(vec_to);
|
|
break;
|
|
case MATHUTILS_VEC_CB_ANGV:
|
|
self->m_angular_velocity.setValue(vec_to);
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int mathutils_obactu_vector_get_index(PyObject *self_v, int subtype, float *vec_from, int index)
|
|
{
|
|
float f[4];
|
|
/* lazy, avoid repeteing the case statement */
|
|
if(!mathutils_obactu_vector_get(self_v, subtype, f))
|
|
return 0;
|
|
|
|
vec_from[index]= f[index];
|
|
return 1;
|
|
}
|
|
|
|
static int mathutils_obactu_vector_set_index(PyObject *self_v, int subtype, float *vec_to, int index)
|
|
{
|
|
float f= vec_to[index];
|
|
|
|
/* lazy, avoid repeteing the case statement */
|
|
if(!mathutils_obactu_vector_get(self_v, subtype, vec_to))
|
|
return 0;
|
|
|
|
vec_to[index]= f;
|
|
mathutils_obactu_vector_set(self_v, subtype, vec_to);
|
|
|
|
return 1;
|
|
}
|
|
|
|
Mathutils_Callback mathutils_obactu_vector_cb = {
|
|
mathutils_obactu_generic_check,
|
|
mathutils_obactu_vector_get,
|
|
mathutils_obactu_vector_set,
|
|
mathutils_obactu_vector_get_index,
|
|
mathutils_obactu_vector_set_index
|
|
};
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_LINV);
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>(self_v);
|
|
if (!PyVecTo(value, self->m_linear_velocity))
|
|
return PY_SET_ATTR_FAIL;
|
|
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
return newVectorObject_cb((PyObject *)self_v, 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_ANGV);
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self= static_cast<KX_ObjectActuator*>(self_v);
|
|
if (!PyVecTo(value, self->m_angular_velocity))
|
|
return PY_SET_ATTR_FAIL;
|
|
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
|
|
|
|
void KX_ObjectActuator_Mathutils_Callback_Init(void)
|
|
{
|
|
// register mathutils callbacks, ok to run more then once.
|
|
mathutils_kxobactu_vector_cb_index= Mathutils_RegisterCallback(&mathutils_obactu_vector_cb);
|
|
}
|
|
|
|
#endif // USE_MATHUTILS
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[0]));
|
|
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.Torque));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
|
|
PyObject* seq = PySequence_Fast(value, "");
|
|
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
|
|
{
|
|
self->m_drot[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
|
|
self->m_dloc[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
|
|
self->m_bitLocalFlag.Torque = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0);
|
|
|
|
if (!PyErr_Occurred())
|
|
{
|
|
Py_DECREF(seq);
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(seq);
|
|
|
|
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
|
|
return PY_SET_ATTR_FAIL;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[1]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DLoc));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
|
|
PyObject* seq = PySequence_Fast(value, "");
|
|
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
|
|
{
|
|
self->m_drot[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
|
|
self->m_dloc[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
|
|
self->m_bitLocalFlag.DLoc = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0);
|
|
|
|
if (!PyErr_Occurred())
|
|
{
|
|
Py_DECREF(seq);
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(seq);
|
|
|
|
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
|
|
return PY_SET_ATTR_FAIL;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[2]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[2]));
|
|
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DRot));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
|
|
PyObject* seq = PySequence_Fast(value, "");
|
|
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
|
|
{
|
|
self->m_drot[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
|
|
self->m_dloc[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
|
|
self->m_bitLocalFlag.DRot = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0);
|
|
|
|
if (!PyErr_Occurred())
|
|
{
|
|
Py_DECREF(seq);
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(seq);
|
|
|
|
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
|
|
return PY_SET_ATTR_FAIL;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
|
|
if (!actuator->m_reference)
|
|
Py_RETURN_NONE;
|
|
|
|
return actuator->m_reference->GetProxy();
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
|
|
KX_GameObject *refOb;
|
|
|
|
if (!ConvertPythonToGameObject(value, &refOb, true, "actu.reference = value: KX_ObjectActuator"))
|
|
return PY_SET_ATTR_FAIL;
|
|
|
|
if (actuator->m_reference)
|
|
actuator->m_reference->UnregisterActuator(actuator);
|
|
|
|
if(refOb==NULL) {
|
|
actuator->m_reference= NULL;
|
|
}
|
|
else {
|
|
actuator->m_reference = refOb;
|
|
actuator->m_reference->RegisterActuator(actuator);
|
|
}
|
|
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
|
|
/* eof */
|