blender/source/gameengine/Rasterizer/RAS_MeshObject.cpp
Campbell Barton 655ed9cc7f style cleanup
2013-03-18 11:44:56 +00:00

620 lines
14 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Rasterizer/RAS_MeshObject.cpp
* \ingroup bgerast
*/
#include "MEM_guardedalloc.h"
#include "DNA_object_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#include "MT_MinMax.h"
#include "MT_Point3.h"
#include <algorithm>
extern "C" {
# include "BKE_deform.h"
}
/* polygon sorting */
struct RAS_MeshObject::polygonSlot
{
float m_z;
int m_index[4];
polygonSlot() {}
/* pnorm is the normal from the plane equation that the distance from is
* used to sort again. */
void get(const RAS_TexVert *vertexarray, const unsigned short *indexarray,
int offset, int nvert, const MT_Vector3& pnorm)
{
MT_Vector3 center(0, 0, 0);
int i;
for (i=0; i<nvert; i++) {
m_index[i] = indexarray[offset+i];
center += vertexarray[m_index[i]].getXYZ();
}
/* note we don't divide center by the number of vertices, since all
* polygons have the same number of vertices, and that we leave out
* the 4-th component of the plane equation since it is constant. */
m_z = MT_dot(pnorm, center);
}
void set(unsigned short *indexarray, int offset, int nvert)
{
int i;
for (i=0; i<nvert; i++)
indexarray[offset+i] = m_index[i];
}
};
struct RAS_MeshObject::backtofront
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z < b.m_z;
}
};
struct RAS_MeshObject::fronttoback
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z > b.m_z;
}
};
/* mesh object */
STR_String RAS_MeshObject::s_emptyname = "";
RAS_MeshObject::RAS_MeshObject(Mesh* mesh)
: m_bModified(true),
m_bMeshModified(true),
m_mesh(mesh)
{
if (m_mesh && m_mesh->key)
{
KeyBlock *kb;
int count=0;
// initialize weight cache for shape objects
// count how many keys in this mesh
for (kb= (KeyBlock *)m_mesh->key->block.first; kb; kb= (KeyBlock *)kb->next)
count++;
m_cacheWeightIndex.resize(count,-1);
}
}
RAS_MeshObject::~RAS_MeshObject()
{
vector<RAS_Polygon*>::iterator it;
if (m_mesh && m_mesh->key)
{
KeyBlock *kb;
// remove the weight cache to avoid memory leak
for (kb = (KeyBlock *)m_mesh->key->block.first; kb; kb = (KeyBlock *)kb->next) {
if (kb->weights)
MEM_freeN(kb->weights);
kb->weights= NULL;
}
}
for (it=m_Polygons.begin(); it!=m_Polygons.end(); it++)
delete (*it);
m_sharedvertex_map.clear();
m_Polygons.clear();
m_materials.clear();
}
bool RAS_MeshObject::MeshModified()
{
return m_bMeshModified;
}
//unsigned int RAS_MeshObject::GetLightLayer()
//{
// return m_lightlayer;
//}
int RAS_MeshObject::NumMaterials()
{
return m_materials.size();
}
const STR_String& RAS_MeshObject::GetMaterialName(unsigned int matid)
{
RAS_MeshMaterial* mmat = GetMeshMaterial(matid);
if (mmat)
return mmat->m_bucket->GetPolyMaterial()->GetMaterialName();
return s_emptyname;
}
RAS_MeshMaterial* RAS_MeshObject::GetMeshMaterial(unsigned int matid)
{
if ((m_materials.empty() == false) && (matid < m_materials.size()))
{
list<RAS_MeshMaterial>::iterator it = m_materials.begin();
while (matid--) ++it;
return &*it;
}
return NULL;
}
int RAS_MeshObject::NumPolygons()
{
return m_Polygons.size();
}
RAS_Polygon* RAS_MeshObject::GetPolygon(int num) const
{
return m_Polygons[num];
}
list<RAS_MeshMaterial>::iterator GetFirstMaterial();
list<RAS_MeshMaterial>::iterator GetLastMaterial();
list<RAS_MeshMaterial>::iterator RAS_MeshObject::GetFirstMaterial()
{
return m_materials.begin();
}
list<RAS_MeshMaterial>::iterator RAS_MeshObject::GetLastMaterial()
{
return m_materials.end();
}
void RAS_MeshObject::SetName(const char *name)
{
m_name = name;
}
STR_String& RAS_MeshObject::GetName()
{
return m_name;
}
const STR_String& RAS_MeshObject::GetTextureName(unsigned int matid)
{
RAS_MeshMaterial* mmat = GetMeshMaterial(matid);
if (mmat)
return mmat->m_bucket->GetPolyMaterial()->GetTextureName();
return s_emptyname;
}
RAS_MeshMaterial *RAS_MeshObject::GetMeshMaterial(RAS_IPolyMaterial *mat)
{
list<RAS_MeshMaterial>::iterator mit;
/* find a mesh material */
for (mit = m_materials.begin(); mit != m_materials.end(); mit++)
if (mit->m_bucket->GetPolyMaterial() == mat)
return &*mit;
return NULL;
}
int RAS_MeshObject::GetMaterialId(RAS_IPolyMaterial *mat)
{
list<RAS_MeshMaterial>::iterator mit;
int imat;
/* find a mesh material */
for (imat=0, mit = m_materials.begin(); mit != m_materials.end(); mit++, imat++)
if (mit->m_bucket->GetPolyMaterial() == mat)
return imat;
return -1;
}
RAS_Polygon* RAS_MeshObject::AddPolygon(RAS_MaterialBucket *bucket, int numverts)
{
RAS_MeshMaterial *mmat;
RAS_Polygon *poly;
RAS_MeshSlot *slot;
/* find a mesh material */
mmat = GetMeshMaterial(bucket->GetPolyMaterial());
/* none found, create a new one */
if (!mmat) {
RAS_MeshMaterial meshmat;
meshmat.m_bucket = bucket;
meshmat.m_baseslot = meshmat.m_bucket->AddMesh(numverts);
meshmat.m_baseslot->m_mesh = this;
m_materials.push_back(meshmat);
mmat = &m_materials.back();
}
/* add it to the bucket, this also adds new display arrays */
slot = mmat->m_baseslot;
slot->AddPolygon(numverts);
/* create a new polygon */
RAS_DisplayArray *darray = slot->CurrentDisplayArray();
poly = new RAS_Polygon(bucket, darray, numverts);
m_Polygons.push_back(poly);
return poly;
}
void RAS_MeshObject::DebugColor(unsigned int abgr)
{
/*int numpolys = NumPolygons();
for (int i=0;i<numpolys;i++) {
RAS_Polygon* poly = m_polygons[i];
for (int v=0;v<poly->VertexCount();v++)
RAS_TexVert* vtx = poly->GetVertex(v)->setDebugRGBA(abgr);
}
*/
/* m_debugcolor = abgr; */
}
void RAS_MeshObject::SetVertexColor(RAS_IPolyMaterial* mat,MT_Vector4 rgba)
{
RAS_MeshMaterial *mmat = GetMeshMaterial(mat);
RAS_MeshSlot *slot = mmat->m_baseslot;
RAS_MeshSlot::iterator it;
size_t i;
for (slot->begin(it); !slot->end(it); slot->next(it))
for (i=it.startvertex; i<it.endvertex; i++)
it.vertex[i].SetRGBA(rgba);
}
void RAS_MeshObject::AddVertex(RAS_Polygon *poly, int i,
const MT_Point3& xyz,
const MT_Point2 uvs[RAS_TexVert::MAX_UNIT],
const MT_Vector4& tangent,
const unsigned int rgba,
const MT_Vector3& normal,
bool flat,
int origindex)
{
RAS_TexVert texvert(xyz, uvs, tangent, rgba, normal, flat, origindex);
RAS_MeshMaterial *mmat;
RAS_DisplayArray *darray;
RAS_MeshSlot *slot;
int offset;
mmat = GetMeshMaterial(poly->GetMaterial()->GetPolyMaterial());
slot = mmat->m_baseslot;
darray = slot->CurrentDisplayArray();
{ /* Shared Vertex! */
/* find vertices shared between faces, with the restriction
* that they exist in the same display array, and have the
* same uv coordinate etc */
vector<SharedVertex>& sharedmap = m_sharedvertex_map[origindex];
vector<SharedVertex>::iterator it;
for (it = sharedmap.begin(); it != sharedmap.end(); it++)
{
if (it->m_darray != darray)
continue;
if (!it->m_darray->m_vertex[it->m_offset].closeTo(&texvert))
continue;
/* found one, add it and we're done */
if (poly->IsVisible())
slot->AddPolygonVertex(it->m_offset);
poly->SetVertexOffset(i, it->m_offset);
return;
}
}
/* no shared vertex found, add a new one */
offset = slot->AddVertex(texvert);
if (poly->IsVisible())
slot->AddPolygonVertex(offset);
poly->SetVertexOffset(i, offset);
{ /* Shared Vertex! */
SharedVertex shared;
shared.m_darray = darray;
shared.m_offset = offset;
m_sharedvertex_map[origindex].push_back(shared);
}
}
int RAS_MeshObject::NumVertices(RAS_IPolyMaterial* mat)
{
RAS_MeshMaterial *mmat;
RAS_MeshSlot *slot;
RAS_MeshSlot::iterator it;
size_t len = 0;
mmat = GetMeshMaterial(mat);
slot = mmat->m_baseslot;
for (slot->begin(it); !slot->end(it); slot->next(it))
len += it.endvertex - it.startvertex;
return len;
}
RAS_TexVert* RAS_MeshObject::GetVertex(unsigned int matid,
unsigned int index)
{
RAS_MeshMaterial *mmat;
RAS_MeshSlot *slot;
RAS_MeshSlot::iterator it;
size_t len;
mmat = GetMeshMaterial(matid);
if (!mmat)
return NULL;
slot = mmat->m_baseslot;
len = 0;
for (slot->begin(it); !slot->end(it); slot->next(it)) {
if (index >= len + it.endvertex - it.startvertex)
len += it.endvertex - it.startvertex;
else
return &it.vertex[index - len];
}
return NULL;
}
const float* RAS_MeshObject::GetVertexLocation(unsigned int orig_index)
{
vector<SharedVertex>& sharedmap = m_sharedvertex_map[orig_index];
vector<SharedVertex>::iterator it= sharedmap.begin();
return it->m_darray->m_vertex[it->m_offset].getXYZ();
}
void RAS_MeshObject::AddMeshUser(void *clientobj, SG_QList *head, RAS_Deformer* deformer)
{
list<RAS_MeshMaterial>::iterator it;
list<RAS_MeshMaterial>::iterator mit;
for (it = m_materials.begin();it!=m_materials.end();++it) {
/* always copy from the base slot, which is never removed
* since new objects can be created with the same mesh data */
if (deformer && !deformer->UseVertexArray())
{
// HACK!
// this deformer doesn't use vertex array => derive mesh
// we must keep only the mesh slots that have unique material id
// this is to match the derived mesh drawing function
// Need a better solution in the future: scan the derive mesh and create vertex array
RAS_IPolyMaterial* curmat = it->m_bucket->GetPolyMaterial();
if (curmat->GetFlag() & RAS_BLENDERGLSL)
{
for (mit = m_materials.begin(); mit != it; ++mit)
{
RAS_IPolyMaterial* mat = mit->m_bucket->GetPolyMaterial();
if ((mat->GetFlag() & RAS_BLENDERGLSL) &&
mat->GetMaterialIndex() == curmat->GetMaterialIndex())
// no need to convert current mesh slot
break;
}
if (mit != it)
continue;
}
}
RAS_MeshSlot *ms = it->m_bucket->CopyMesh(it->m_baseslot);
ms->m_clientObj = clientobj;
ms->SetDeformer(deformer);
it->m_slots.insert(clientobj, ms);
head->QAddBack(ms);
}
}
void RAS_MeshObject::RemoveFromBuckets(void *clientobj)
{
list<RAS_MeshMaterial>::iterator it;
for (it = m_materials.begin();it!=m_materials.end();++it) {
RAS_MeshSlot **msp = it->m_slots[clientobj];
if (!msp)
continue;
RAS_MeshSlot *ms = *msp;
it->m_bucket->RemoveMesh(ms);
it->m_slots.remove(clientobj);
}
}
//void RAS_MeshObject::Transform(const MT_Transform& trans)
//{
//m_trans.translate(MT_Vector3(0,0,1));//.operator *=(trans);
// for (int i=0;i<m_Polygons.size();i++)
// {
// m_Polygons[i]->Transform(trans);
// }
//}
/*
void RAS_MeshObject::RelativeTransform(const MT_Vector3& vec)
{
for (int i=0;i<m_Polygons.size();i++)
{
m_Polygons[i]->RelativeTransform(vec);
}
}
*/
void RAS_MeshObject::SortPolygons(RAS_MeshSlot& ms, const MT_Transform &transform)
{
// Limitations: sorting is quite simple, and handles many
// cases wrong, partially due to polygons being sorted per
// bucket.
//
// a) mixed triangles/quads are sorted wrong
// b) mixed materials are sorted wrong
// c) more than 65k faces are sorted wrong
// d) intersecting objects are sorted wrong
// e) intersecting polygons are sorted wrong
//
// a) can be solved by making all faces either triangles or quads
// if they need to be z-sorted. c) could be solved by allowing
// larger buckets, b) and d) cannot be solved easily if we want
// to avoid excessive state changes while drawing. e) would
// require splitting polygons.
RAS_MeshSlot::iterator it;
size_t j;
for (ms.begin(it); !ms.end(it); ms.next(it)) {
unsigned int nvert = (int)it.array->m_type;
unsigned int totpoly = it.totindex/nvert;
if (totpoly <= 1)
continue;
if (it.array->m_type == RAS_DisplayArray::LINE)
continue;
// Extract camera Z plane...
const MT_Vector3 pnorm(transform.getBasis()[2]);
// unneeded: const MT_Scalar pval = transform.getOrigin()[2];
vector<polygonSlot> poly_slots(totpoly);
/* get indices and z into temporary array */
for (j=0; j<totpoly; j++)
poly_slots[j].get(it.vertex, it.index, j*nvert, nvert, pnorm);
/* sort (stable_sort might be better, if flickering happens?) */
std::sort(poly_slots.begin(), poly_slots.end(), backtofront());
/* get indices from temporary array again */
for (j=0; j<totpoly; j++)
poly_slots[j].set(it.index, j*nvert, nvert);
}
}
void RAS_MeshObject::SchedulePolygons(int drawingmode)
{
if (m_bModified)
{
m_bModified = false;
m_bMeshModified = true;
}
}
static int get_def_index(Object* ob, const char* vgroup)
{
bDeformGroup *curdef;
int index = 0;
for (curdef = (bDeformGroup*)ob->defbase.first; curdef; curdef=(bDeformGroup*)curdef->next, index++)
if (!strcmp(curdef->name, vgroup))
return index;
return -1;
}
void RAS_MeshObject::CheckWeightCache(Object* obj)
{
KeyBlock *kb;
int kbindex, defindex;
MDeformVert *dv= NULL;
int totvert, i;
float *weights;
if (!m_mesh->key)
return;
for (kbindex = 0, kb = (KeyBlock *)m_mesh->key->block.first; kb; kb = kb->next, kbindex++)
{
// first check the cases where the weight must be cleared
if (kb->vgroup[0] == 0 ||
m_mesh->dvert == NULL ||
(defindex = get_def_index(obj, kb->vgroup)) == -1) {
if (kb->weights) {
MEM_freeN(kb->weights);
kb->weights = NULL;
}
m_cacheWeightIndex[kbindex] = -1;
} else if (m_cacheWeightIndex[kbindex] != defindex) {
// a weight array is required but the cache is not matching
if (kb->weights) {
MEM_freeN(kb->weights);
kb->weights = NULL;
}
dv= m_mesh->dvert;
totvert= m_mesh->totvert;
weights= (float*)MEM_mallocN(totvert*sizeof(float), "weights");
for (i=0; i < totvert; i++, dv++) {
weights[i] = defvert_find_weight(dv, defindex);
}
kb->weights = weights;
m_cacheWeightIndex[kbindex] = defindex;
}
}
}