blender/intern/cycles/kernel/osl/osl_shader.cpp
Sergey Sharybin 87cff57207 Fix T44123: Cycles SSS renders black in recent builds
Issue was introduced in 01ee21f where i didn't notice *_setup()
function only doing partial initialization, and some of parameters
are expected to be initialized by callee function.

This was hitting only some setups, so tests with benchmark scenes
didn't unleash issues. Now it should all be fine.

This is to go to the 2.74 branch and we actually might re-AHOY.
2015-03-25 02:33:49 +05:00

570 lines
16 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <OSL/oslexec.h>
#include "kernel_compat_cpu.h"
#include "kernel_montecarlo.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "geom/geom_object.h"
#include "closure/bsdf_diffuse.h"
#include "closure/bssrdf.h"
#include "osl_bssrdf.h"
#include "osl_closures.h"
#include "osl_globals.h"
#include "osl_services.h"
#include "osl_shader.h"
#include "util_foreach.h"
#include "attribute.h"
CCL_NAMESPACE_BEGIN
/* Threads */
void OSLShader::thread_init(KernelGlobals *kg, KernelGlobals *kernel_globals, OSLGlobals *osl_globals)
{
/* no osl used? */
if(!osl_globals->use) {
kg->osl = NULL;
return;
}
/* per thread kernel data init*/
kg->osl = osl_globals;
kg->osl->services->thread_init(kernel_globals, osl_globals->ts);
OSL::ShadingSystem *ss = kg->osl->ss;
OSLThreadData *tdata = new OSLThreadData();
memset(&tdata->globals, 0, sizeof(OSL::ShaderGlobals));
tdata->globals.tracedata = &tdata->tracedata;
tdata->globals.flipHandedness = false;
tdata->osl_thread_info = ss->create_thread_info();
for(int i = 0; i < SHADER_CONTEXT_NUM; i++)
tdata->context[i] = ss->get_context(tdata->osl_thread_info);
tdata->oiio_thread_info = osl_globals->ts->get_perthread_info();
kg->osl_ss = (OSLShadingSystem*)ss;
kg->osl_tdata = tdata;
}
void OSLShader::thread_free(KernelGlobals *kg)
{
if(!kg->osl)
return;
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
for(int i = 0; i < SHADER_CONTEXT_NUM; i++)
ss->release_context(tdata->context[i]);
ss->destroy_thread_info(tdata->osl_thread_info);
delete tdata;
kg->osl = NULL;
kg->osl_ss = NULL;
kg->osl_tdata = NULL;
}
/* Globals */
static void shaderdata_to_shaderglobals(KernelGlobals *kg, ShaderData *sd,
int path_flag, OSLThreadData *tdata)
{
OSL::ShaderGlobals *globals = &tdata->globals;
/* copy from shader data to shader globals */
globals->P = TO_VEC3(sd->P);
globals->dPdx = TO_VEC3(sd->dP.dx);
globals->dPdy = TO_VEC3(sd->dP.dy);
globals->I = TO_VEC3(sd->I);
globals->dIdx = TO_VEC3(sd->dI.dx);
globals->dIdy = TO_VEC3(sd->dI.dy);
globals->N = TO_VEC3(sd->N);
globals->Ng = TO_VEC3(sd->Ng);
globals->u = sd->u;
globals->dudx = sd->du.dx;
globals->dudy = sd->du.dy;
globals->v = sd->v;
globals->dvdx = sd->dv.dx;
globals->dvdy = sd->dv.dy;
globals->dPdu = TO_VEC3(sd->dPdu);
globals->dPdv = TO_VEC3(sd->dPdv);
globals->surfacearea = (sd->object == OBJECT_NONE) ? 1.0f : object_surface_area(kg, sd->object);
globals->time = sd->time;
/* booleans */
globals->raytype = path_flag;
globals->backfacing = (sd->flag & SD_BACKFACING);
/* shader data to be used in services callbacks */
globals->renderstate = sd;
/* hacky, we leave it to services to fetch actual object matrix */
globals->shader2common = sd;
globals->object2common = sd;
/* must be set to NULL before execute */
globals->Ci = NULL;
/* clear trace data */
tdata->tracedata.init = false;
/* used by renderservices */
sd->osl_globals = kg;
}
/* Surface */
static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
/* OSL gives us a closure tree, we flatten it into arrays per
* closure type, for evaluation, sampling, etc later on. */
if (closure->type == OSL::ClosureColor::COMPONENT) {
OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
CClosurePrimitive *prim = (CClosurePrimitive *)comp->data();
if (prim) {
ShaderClosure sc;
#ifdef OSL_SUPPORTS_WEIGHTED_CLOSURE_COMPONENTS
weight = weight*TO_FLOAT3(comp->w);
#endif
sc.weight = weight;
prim->setup();
switch (prim->category) {
case CClosurePrimitive::BSDF: {
CBSDFClosure *bsdf = (CBSDFClosure *)prim;
int scattering = bsdf->scattering();
/* caustic options */
if((scattering & LABEL_GLOSSY) && (path_flag & PATH_RAY_DIFFUSE)) {
KernelGlobals *kg = sd->osl_globals;
if((!kernel_data.integrator.caustics_reflective && (scattering & LABEL_REFLECT)) ||
(!kernel_data.integrator.caustics_refractive && (scattering & LABEL_TRANSMIT))) {
return;
}
}
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = bsdf->sc.type;
sc.N = bsdf->sc.N;
sc.T = bsdf->sc.T;
sc.data0 = bsdf->sc.data0;
sc.data1 = bsdf->sc.data1;
sc.data2 = bsdf->sc.data2;
sc.prim = bsdf->sc.prim;
/* add */
if(sc.sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
sd->flag |= bsdf->shaderdata_flag();
}
break;
}
case CClosurePrimitive::Emissive: {
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = CLOSURE_EMISSION_ID;
sc.data0 = 0.0f;
sc.data1 = 0.0f;
sc.data2 = 0.0f;
sc.prim = NULL;
/* flag */
if(sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
sd->flag |= SD_EMISSION;
}
break;
}
case CClosurePrimitive::AmbientOcclusion: {
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = CLOSURE_AMBIENT_OCCLUSION_ID;
sc.data0 = 0.0f;
sc.data1 = 0.0f;
sc.data2 = 0.0f;
sc.prim = NULL;
if(sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
sd->flag |= SD_AO;
}
break;
}
case CClosurePrimitive::Holdout: {
sc.sample_weight = 0.0f;
sc.type = CLOSURE_HOLDOUT_ID;
sc.data0 = 0.0f;
sc.data1 = 0.0f;
sc.data2 = 0.0f;
sc.prim = NULL;
if(sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
sd->flag |= SD_HOLDOUT;
}
break;
}
case CClosurePrimitive::BSSRDF: {
CBSSRDFClosure *bssrdf = (CBSSRDFClosure *)prim;
float sample_weight = fabsf(average(weight));
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure+2 < MAX_CLOSURE) {
sc.sample_weight = sample_weight;
sc.type = bssrdf->sc.type;
sc.N = bssrdf->sc.N;
sc.data1 = bssrdf->sc.data1;
sc.T.x = bssrdf->sc.T.x;
sc.prim = NULL;
/* disable in case of diffuse ancestor, can't see it well then and
* adds considerably noise due to probabilities of continuing path
* getting lower and lower */
if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
bssrdf->radius = make_float3(0.0f, 0.0f, 0.0f);
/* create one closure for each color channel */
if(fabsf(weight.x) > 0.0f) {
sc.weight = make_float3(weight.x, 0.0f, 0.0f);
sc.data0 = bssrdf->radius.x;
sc.data1 = 0.0f;
sd->flag |= bssrdf_setup(&sc, sc.type);
sd->closure[sd->num_closure++] = sc;
}
if(fabsf(weight.y) > 0.0f) {
sc.weight = make_float3(0.0f, weight.y, 0.0f);
sc.data0 = bssrdf->radius.y;
sc.data1 = 0.0f;
sd->flag |= bssrdf_setup(&sc, sc.type);
sd->closure[sd->num_closure++] = sc;
}
if(fabsf(weight.z) > 0.0f) {
sc.weight = make_float3(0.0f, 0.0f, weight.z);
sc.data0 = bssrdf->radius.z;
sc.data1 = 0.0f;
sd->flag |= bssrdf_setup(&sc, sc.type);
sd->closure[sd->num_closure++] = sc;
}
}
break;
}
case CClosurePrimitive::Background:
case CClosurePrimitive::Volume:
break; /* not relevant */
}
}
}
else if (closure->type == OSL::ClosureColor::MUL) {
OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
flatten_surface_closure_tree(sd, path_flag, mul->closure, TO_FLOAT3(mul->weight) * weight);
}
else if (closure->type == OSL::ClosureColor::ADD) {
OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
flatten_surface_closure_tree(sd, path_flag, add->closureA, weight);
flatten_surface_closure_tree(sd, path_flag, add->closureB, weight);
}
}
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);
/* execute shader for this point */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
int shader = sd->shader & SHADER_MASK;
if (kg->osl->surface_state[shader])
ss->execute(*octx, *(kg->osl->surface_state[shader]), *globals);
/* flatten closure tree */
if (globals->Ci)
flatten_surface_closure_tree(sd, path_flag, globals->Ci);
}
/* Background */
static float3 flatten_background_closure_tree(const OSL::ClosureColor *closure)
{
/* OSL gives us a closure tree, if we are shading for background there
* is only one supported closure type at the moment, which has no evaluation
* functions, so we just sum the weights */
if (closure->type == OSL::ClosureColor::COMPONENT) {
OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
CClosurePrimitive *prim = (CClosurePrimitive *)comp->data();
if (prim && prim->category == CClosurePrimitive::Background)
#ifdef OSL_SUPPORTS_WEIGHTED_CLOSURE_COMPONENTS
return TO_FLOAT3(comp->w);
#else
return make_float3(1.0f, 1.0f, 1.0f);
#endif
}
else if (closure->type == OSL::ClosureColor::MUL) {
OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
return TO_FLOAT3(mul->weight) * flatten_background_closure_tree(mul->closure);
}
else if (closure->type == OSL::ClosureColor::ADD) {
OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
return flatten_background_closure_tree(add->closureA) +
flatten_background_closure_tree(add->closureB);
}
return make_float3(0.0f, 0.0f, 0.0f);
}
float3 OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);
/* execute shader for this point */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
if (kg->osl->background_state)
ss->execute(*octx, *(kg->osl->background_state), *globals);
/* return background color immediately */
if (globals->Ci)
return flatten_background_closure_tree(globals->Ci);
return make_float3(0.0f, 0.0f, 0.0f);
}
/* Volume */
static void flatten_volume_closure_tree(ShaderData *sd,
const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
/* OSL gives us a closure tree, we flatten it into arrays per
* closure type, for evaluation, sampling, etc later on. */
if (closure->type == OSL::ClosureColor::COMPONENT) {
OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
CClosurePrimitive *prim = (CClosurePrimitive *)comp->data();
if (prim) {
ShaderClosure sc;
#ifdef OSL_SUPPORTS_WEIGHTED_CLOSURE_COMPONENTS
weight = weight*TO_FLOAT3(comp->w);
#endif
sc.weight = weight;
prim->setup();
switch (prim->category) {
case CClosurePrimitive::Volume: {
CVolumeClosure *volume = (CVolumeClosure *)prim;
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = volume->sc.type;
sc.data0 = volume->sc.data0;
sc.data1 = volume->sc.data1;
/* add */
if((sc.sample_weight > CLOSURE_WEIGHT_CUTOFF) &&
(sd->num_closure < MAX_CLOSURE))
{
sd->closure[sd->num_closure++] = sc;
sd->flag |= volume->shaderdata_flag();
}
break;
}
case CClosurePrimitive::Emissive: {
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = CLOSURE_EMISSION_ID;
sc.data0 = 0.0f;
sc.data1 = 0.0f;
sc.prim = NULL;
/* flag */
if(sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
sd->flag |= SD_EMISSION;
}
break;
}
case CClosurePrimitive::Holdout:
break; /* not implemented */
case CClosurePrimitive::Background:
case CClosurePrimitive::BSDF:
case CClosurePrimitive::BSSRDF:
case CClosurePrimitive::AmbientOcclusion:
break; /* not relevant */
}
}
}
else if (closure->type == OSL::ClosureColor::MUL) {
OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
flatten_volume_closure_tree(sd, mul->closure, TO_FLOAT3(mul->weight) * weight);
}
else if (closure->type == OSL::ClosureColor::ADD) {
OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
flatten_volume_closure_tree(sd, add->closureA, weight);
flatten_volume_closure_tree(sd, add->closureB, weight);
}
}
void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);
/* execute shader */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
int shader = sd->shader & SHADER_MASK;
if (kg->osl->volume_state[shader])
ss->execute(*octx, *(kg->osl->volume_state[shader]), *globals);
/* flatten closure tree */
if (globals->Ci)
flatten_volume_closure_tree(sd, globals->Ci);
}
/* Displacement */
void OSLShader::eval_displacement(KernelGlobals *kg, ShaderData *sd, ShaderContext ctx)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, 0, tdata);
/* execute shader */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
int shader = sd->shader & SHADER_MASK;
if (kg->osl->displacement_state[shader])
ss->execute(*octx, *(kg->osl->displacement_state[shader]), *globals);
/* get back position */
sd->P = TO_FLOAT3(globals->P);
}
/* BSDF Closure */
int OSLShader::bsdf_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3& eval, float3& omega_in, differential3& domega_in, float& pdf)
{
CBSDFClosure *sample_bsdf = (CBSDFClosure *)sc->prim;
pdf = 0.0f;
return sample_bsdf->sample(sd->Ng,
sd->I, sd->dI.dx, sd->dI.dy,
randu, randv,
omega_in, domega_in.dx, domega_in.dy,
pdf, eval);
}
float3 OSLShader::bsdf_eval(const ShaderData *sd, const ShaderClosure *sc, const float3& omega_in, float& pdf)
{
CBSDFClosure *bsdf = (CBSDFClosure *)sc->prim;
float3 bsdf_eval;
if (dot(sd->Ng, omega_in) >= 0.0f)
bsdf_eval = bsdf->eval_reflect(sd->I, omega_in, pdf);
else
bsdf_eval = bsdf->eval_transmit(sd->I, omega_in, pdf);
return bsdf_eval;
}
void OSLShader::bsdf_blur(ShaderClosure *sc, float roughness)
{
CBSDFClosure *bsdf = (CBSDFClosure *)sc->prim;
bsdf->blur(roughness);
}
/* Attributes */
int OSLShader::find_attribute(KernelGlobals *kg, const ShaderData *sd, uint id, AttributeElement *elem)
{
/* for OSL, a hash map is used to lookup the attribute by name. */
int object = sd->object*ATTR_PRIM_TYPES;
#ifdef __HAIR__
if(sd->type & PRIMITIVE_ALL_CURVE) object += ATTR_PRIM_CURVE;
#endif
OSLGlobals::AttributeMap &attr_map = kg->osl->attribute_map[object];
ustring stdname(std::string("geom:") + std::string(Attribute::standard_name((AttributeStandard)id)));
OSLGlobals::AttributeMap::const_iterator it = attr_map.find(stdname);
if (it != attr_map.end()) {
const OSLGlobals::Attribute &osl_attr = it->second;
*elem = osl_attr.elem;
if(sd->prim == PRIM_NONE && (AttributeElement)osl_attr.elem != ATTR_ELEMENT_MESH)
return ATTR_STD_NOT_FOUND;
/* return result */
return (osl_attr.elem == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : osl_attr.offset;
}
else
return (int)ATTR_STD_NOT_FOUND;
}
CCL_NAMESPACE_END