blender/intern/cycles/kernel/svm/svm_image.h
Sergey Sharybin 3e534833e3 Cycles: Make sphere and tube image mapping friendly with OpenCL
OpenCL doesn't let you to get address of vector components, which
is kinda annoying. On the other hand, maybe now compiler will have
more chances to optimize something out.
2015-02-19 12:52:48 +05:00

513 lines
20 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#ifdef __KERNEL_OPENCL__
/* For OpenCL all images are packed in a single array, and we do manual lookup
* and interpolation. */
ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int offset)
{
uchar4 r = kernel_tex_fetch(__tex_image_packed, offset);
float f = 1.0f/255.0f;
return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
}
ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
{
x %= width;
if(x < 0)
x += width;
return x;
}
ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
{
return clamp(x, 0, width-1);
}
ccl_device_inline float svm_image_texture_frac(float x, int *ix)
{
int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
*ix = i;
return x - (float)i;
}
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
{
/* first slots are used by float textures, which are not supported here */
if(id < TEX_NUM_FLOAT_IMAGES)
return make_float4(1.0f, 0.0f, 1.0f, 1.0f);
id -= TEX_NUM_FLOAT_IMAGES;
uint4 info = kernel_tex_fetch(__tex_image_packed_info, id);
uint width = info.x;
uint height = info.y;
uint offset = info.z;
uint periodic = (info.w & 0x1);
uint interpolation = info.w >> 1;
float4 r;
int ix, iy, nix, niy;
if (interpolation == INTERPOLATION_CLOSEST) {
svm_image_texture_frac(x*width, &ix);
svm_image_texture_frac(y*height, &iy);
if(periodic) {
ix = svm_image_texture_wrap_periodic(ix, width);
iy = svm_image_texture_wrap_periodic(iy, height);
}
else {
ix = svm_image_texture_wrap_clamp(ix, width);
iy = svm_image_texture_wrap_clamp(iy, height);
}
r = svm_image_texture_read(kg, offset + ix + iy*width);
}
else { /* We default to linear interpolation if it is not closest */
float tx = svm_image_texture_frac(x*width, &ix);
float ty = svm_image_texture_frac(y*height, &iy);
if(periodic) {
ix = svm_image_texture_wrap_periodic(ix, width);
iy = svm_image_texture_wrap_periodic(iy, height);
nix = svm_image_texture_wrap_periodic(ix+1, width);
niy = svm_image_texture_wrap_periodic(iy+1, height);
}
else {
ix = svm_image_texture_wrap_clamp(ix, width);
iy = svm_image_texture_wrap_clamp(iy, height);
nix = svm_image_texture_wrap_clamp(ix+1, width);
niy = svm_image_texture_wrap_clamp(iy+1, height);
}
r = (1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, offset + ix + iy*width);
r += (1.0f - ty)*tx*svm_image_texture_read(kg, offset + nix + iy*width);
r += ty*(1.0f - tx)*svm_image_texture_read(kg, offset + ix + niy*width);
r += ty*tx*svm_image_texture_read(kg, offset + nix + niy*width);
}
if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
float invw = 1.0f/r.w;
r.x *= invw;
r.y *= invw;
r.z *= invw;
if(id >= TEX_NUM_FLOAT_IMAGES) {
r.x = min(r.x, 1.0f);
r.y = min(r.y, 1.0f);
r.z = min(r.z, 1.0f);
}
}
if(srgb) {
r.x = color_srgb_to_scene_linear(r.x);
r.y = color_srgb_to_scene_linear(r.y);
r.z = color_srgb_to_scene_linear(r.z);
}
return r;
}
#else
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
{
#ifdef __KERNEL_CPU__
#ifdef __KERNEL_SSE2__
ssef r_ssef;
float4 &r = (float4 &)r_ssef;
r = kernel_tex_image_interp(id, x, y);
#else
float4 r = kernel_tex_image_interp(id, x, y);
#endif
#else
float4 r;
/* not particularly proud of this massive switch, what are the
* alternatives?
* - use a single big 1D texture, and do our own lookup/filtering
* - group by size and use a 3d texture, performance impact
* - group into larger texture with some padding for correct lerp
*
* also note that cuda has a textures limit (128 for Fermi, 256 for Kepler),
* and we cannot use all since we still need some for other storage */
switch(id) {
case 0: r = kernel_tex_image_interp(__tex_image_float_000, x, y); break;
case 1: r = kernel_tex_image_interp(__tex_image_float_001, x, y); break;
case 2: r = kernel_tex_image_interp(__tex_image_float_002, x, y); break;
case 3: r = kernel_tex_image_interp(__tex_image_float_003, x, y); break;
case 4: r = kernel_tex_image_interp(__tex_image_float_004, x, y); break;
case 5: r = kernel_tex_image_interp(__tex_image_005, x, y); break;
case 6: r = kernel_tex_image_interp(__tex_image_006, x, y); break;
case 7: r = kernel_tex_image_interp(__tex_image_007, x, y); break;
case 8: r = kernel_tex_image_interp(__tex_image_008, x, y); break;
case 9: r = kernel_tex_image_interp(__tex_image_009, x, y); break;
case 10: r = kernel_tex_image_interp(__tex_image_010, x, y); break;
case 11: r = kernel_tex_image_interp(__tex_image_011, x, y); break;
case 12: r = kernel_tex_image_interp(__tex_image_012, x, y); break;
case 13: r = kernel_tex_image_interp(__tex_image_013, x, y); break;
case 14: r = kernel_tex_image_interp(__tex_image_014, x, y); break;
case 15: r = kernel_tex_image_interp(__tex_image_015, x, y); break;
case 16: r = kernel_tex_image_interp(__tex_image_016, x, y); break;
case 17: r = kernel_tex_image_interp(__tex_image_017, x, y); break;
case 18: r = kernel_tex_image_interp(__tex_image_018, x, y); break;
case 19: r = kernel_tex_image_interp(__tex_image_019, x, y); break;
case 20: r = kernel_tex_image_interp(__tex_image_020, x, y); break;
case 21: r = kernel_tex_image_interp(__tex_image_021, x, y); break;
case 22: r = kernel_tex_image_interp(__tex_image_022, x, y); break;
case 23: r = kernel_tex_image_interp(__tex_image_023, x, y); break;
case 24: r = kernel_tex_image_interp(__tex_image_024, x, y); break;
case 25: r = kernel_tex_image_interp(__tex_image_025, x, y); break;
case 26: r = kernel_tex_image_interp(__tex_image_026, x, y); break;
case 27: r = kernel_tex_image_interp(__tex_image_027, x, y); break;
case 28: r = kernel_tex_image_interp(__tex_image_028, x, y); break;
case 29: r = kernel_tex_image_interp(__tex_image_029, x, y); break;
case 30: r = kernel_tex_image_interp(__tex_image_030, x, y); break;
case 31: r = kernel_tex_image_interp(__tex_image_031, x, y); break;
case 32: r = kernel_tex_image_interp(__tex_image_032, x, y); break;
case 33: r = kernel_tex_image_interp(__tex_image_033, x, y); break;
case 34: r = kernel_tex_image_interp(__tex_image_034, x, y); break;
case 35: r = kernel_tex_image_interp(__tex_image_035, x, y); break;
case 36: r = kernel_tex_image_interp(__tex_image_036, x, y); break;
case 37: r = kernel_tex_image_interp(__tex_image_037, x, y); break;
case 38: r = kernel_tex_image_interp(__tex_image_038, x, y); break;
case 39: r = kernel_tex_image_interp(__tex_image_039, x, y); break;
case 40: r = kernel_tex_image_interp(__tex_image_040, x, y); break;
case 41: r = kernel_tex_image_interp(__tex_image_041, x, y); break;
case 42: r = kernel_tex_image_interp(__tex_image_042, x, y); break;
case 43: r = kernel_tex_image_interp(__tex_image_043, x, y); break;
case 44: r = kernel_tex_image_interp(__tex_image_044, x, y); break;
case 45: r = kernel_tex_image_interp(__tex_image_045, x, y); break;
case 46: r = kernel_tex_image_interp(__tex_image_046, x, y); break;
case 47: r = kernel_tex_image_interp(__tex_image_047, x, y); break;
case 48: r = kernel_tex_image_interp(__tex_image_048, x, y); break;
case 49: r = kernel_tex_image_interp(__tex_image_049, x, y); break;
case 50: r = kernel_tex_image_interp(__tex_image_050, x, y); break;
case 51: r = kernel_tex_image_interp(__tex_image_051, x, y); break;
case 52: r = kernel_tex_image_interp(__tex_image_052, x, y); break;
case 53: r = kernel_tex_image_interp(__tex_image_053, x, y); break;
case 54: r = kernel_tex_image_interp(__tex_image_054, x, y); break;
case 55: r = kernel_tex_image_interp(__tex_image_055, x, y); break;
case 56: r = kernel_tex_image_interp(__tex_image_056, x, y); break;
case 57: r = kernel_tex_image_interp(__tex_image_057, x, y); break;
case 58: r = kernel_tex_image_interp(__tex_image_058, x, y); break;
case 59: r = kernel_tex_image_interp(__tex_image_059, x, y); break;
case 60: r = kernel_tex_image_interp(__tex_image_060, x, y); break;
case 61: r = kernel_tex_image_interp(__tex_image_061, x, y); break;
case 62: r = kernel_tex_image_interp(__tex_image_062, x, y); break;
case 63: r = kernel_tex_image_interp(__tex_image_063, x, y); break;
case 64: r = kernel_tex_image_interp(__tex_image_064, x, y); break;
case 65: r = kernel_tex_image_interp(__tex_image_065, x, y); break;
case 66: r = kernel_tex_image_interp(__tex_image_066, x, y); break;
case 67: r = kernel_tex_image_interp(__tex_image_067, x, y); break;
case 68: r = kernel_tex_image_interp(__tex_image_068, x, y); break;
case 69: r = kernel_tex_image_interp(__tex_image_069, x, y); break;
case 70: r = kernel_tex_image_interp(__tex_image_070, x, y); break;
case 71: r = kernel_tex_image_interp(__tex_image_071, x, y); break;
case 72: r = kernel_tex_image_interp(__tex_image_072, x, y); break;
case 73: r = kernel_tex_image_interp(__tex_image_073, x, y); break;
case 74: r = kernel_tex_image_interp(__tex_image_074, x, y); break;
case 75: r = kernel_tex_image_interp(__tex_image_075, x, y); break;
case 76: r = kernel_tex_image_interp(__tex_image_076, x, y); break;
case 77: r = kernel_tex_image_interp(__tex_image_077, x, y); break;
case 78: r = kernel_tex_image_interp(__tex_image_078, x, y); break;
case 79: r = kernel_tex_image_interp(__tex_image_079, x, y); break;
case 80: r = kernel_tex_image_interp(__tex_image_080, x, y); break;
case 81: r = kernel_tex_image_interp(__tex_image_081, x, y); break;
case 82: r = kernel_tex_image_interp(__tex_image_082, x, y); break;
case 83: r = kernel_tex_image_interp(__tex_image_083, x, y); break;
case 84: r = kernel_tex_image_interp(__tex_image_084, x, y); break;
case 85: r = kernel_tex_image_interp(__tex_image_085, x, y); break;
case 86: r = kernel_tex_image_interp(__tex_image_086, x, y); break;
case 87: r = kernel_tex_image_interp(__tex_image_087, x, y); break;
case 88: r = kernel_tex_image_interp(__tex_image_088, x, y); break;
case 89: r = kernel_tex_image_interp(__tex_image_089, x, y); break;
case 90: r = kernel_tex_image_interp(__tex_image_090, x, y); break;
case 91: r = kernel_tex_image_interp(__tex_image_091, x, y); break;
case 92: r = kernel_tex_image_interp(__tex_image_092, x, y); break;
case 93: r = kernel_tex_image_interp(__tex_image_093, x, y); break;
case 94: r = kernel_tex_image_interp(__tex_image_094, x, y); break;
case 95: r = kernel_tex_image_interp(__tex_image_095, x, y); break;
case 96: r = kernel_tex_image_interp(__tex_image_096, x, y); break;
case 97: r = kernel_tex_image_interp(__tex_image_097, x, y); break;
case 98: r = kernel_tex_image_interp(__tex_image_098, x, y); break;
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
case 99: r = kernel_tex_image_interp(__tex_image_099, x, y); break;
case 100: r = kernel_tex_image_interp(__tex_image_100, x, y); break;
case 101: r = kernel_tex_image_interp(__tex_image_101, x, y); break;
case 102: r = kernel_tex_image_interp(__tex_image_102, x, y); break;
case 103: r = kernel_tex_image_interp(__tex_image_103, x, y); break;
case 104: r = kernel_tex_image_interp(__tex_image_104, x, y); break;
case 105: r = kernel_tex_image_interp(__tex_image_105, x, y); break;
case 106: r = kernel_tex_image_interp(__tex_image_106, x, y); break;
case 107: r = kernel_tex_image_interp(__tex_image_107, x, y); break;
case 108: r = kernel_tex_image_interp(__tex_image_108, x, y); break;
case 109: r = kernel_tex_image_interp(__tex_image_109, x, y); break;
case 110: r = kernel_tex_image_interp(__tex_image_110, x, y); break;
case 111: r = kernel_tex_image_interp(__tex_image_111, x, y); break;
case 112: r = kernel_tex_image_interp(__tex_image_112, x, y); break;
case 113: r = kernel_tex_image_interp(__tex_image_113, x, y); break;
case 114: r = kernel_tex_image_interp(__tex_image_114, x, y); break;
case 115: r = kernel_tex_image_interp(__tex_image_115, x, y); break;
case 116: r = kernel_tex_image_interp(__tex_image_116, x, y); break;
case 117: r = kernel_tex_image_interp(__tex_image_117, x, y); break;
case 118: r = kernel_tex_image_interp(__tex_image_118, x, y); break;
case 119: r = kernel_tex_image_interp(__tex_image_119, x, y); break;
case 120: r = kernel_tex_image_interp(__tex_image_120, x, y); break;
case 121: r = kernel_tex_image_interp(__tex_image_121, x, y); break;
case 122: r = kernel_tex_image_interp(__tex_image_122, x, y); break;
case 123: r = kernel_tex_image_interp(__tex_image_123, x, y); break;
case 124: r = kernel_tex_image_interp(__tex_image_124, x, y); break;
case 125: r = kernel_tex_image_interp(__tex_image_125, x, y); break;
case 126: r = kernel_tex_image_interp(__tex_image_126, x, y); break;
case 127: r = kernel_tex_image_interp(__tex_image_127, x, y); break;
case 128: r = kernel_tex_image_interp(__tex_image_128, x, y); break;
case 129: r = kernel_tex_image_interp(__tex_image_129, x, y); break;
case 130: r = kernel_tex_image_interp(__tex_image_130, x, y); break;
case 131: r = kernel_tex_image_interp(__tex_image_131, x, y); break;
case 132: r = kernel_tex_image_interp(__tex_image_132, x, y); break;
case 133: r = kernel_tex_image_interp(__tex_image_133, x, y); break;
case 134: r = kernel_tex_image_interp(__tex_image_134, x, y); break;
case 135: r = kernel_tex_image_interp(__tex_image_135, x, y); break;
case 136: r = kernel_tex_image_interp(__tex_image_136, x, y); break;
case 137: r = kernel_tex_image_interp(__tex_image_137, x, y); break;
case 138: r = kernel_tex_image_interp(__tex_image_138, x, y); break;
case 139: r = kernel_tex_image_interp(__tex_image_139, x, y); break;
case 140: r = kernel_tex_image_interp(__tex_image_140, x, y); break;
case 141: r = kernel_tex_image_interp(__tex_image_141, x, y); break;
case 142: r = kernel_tex_image_interp(__tex_image_142, x, y); break;
case 143: r = kernel_tex_image_interp(__tex_image_143, x, y); break;
case 144: r = kernel_tex_image_interp(__tex_image_144, x, y); break;
case 145: r = kernel_tex_image_interp(__tex_image_145, x, y); break;
case 146: r = kernel_tex_image_interp(__tex_image_146, x, y); break;
case 147: r = kernel_tex_image_interp(__tex_image_147, x, y); break;
case 148: r = kernel_tex_image_interp(__tex_image_148, x, y); break;
case 149: r = kernel_tex_image_interp(__tex_image_149, x, y); break;
case 150: r = kernel_tex_image_interp(__tex_image_150, x, y); break;
#endif
default:
kernel_assert(0);
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
#endif
#ifdef __KERNEL_SSE2__
float alpha = r.w;
if(use_alpha && alpha != 1.0f && alpha != 0.0f) {
r_ssef = r_ssef / ssef(alpha);
if(id >= TEX_NUM_FLOAT_IMAGES)
r_ssef = min(r_ssef, ssef(1.0f));
r.w = alpha;
}
if(srgb) {
r_ssef = color_srgb_to_scene_linear(r_ssef);
r.w = alpha;
}
#else
if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
float invw = 1.0f/r.w;
r.x *= invw;
r.y *= invw;
r.z *= invw;
if(id >= TEX_NUM_FLOAT_IMAGES) {
r.x = min(r.x, 1.0f);
r.y = min(r.y, 1.0f);
r.z = min(r.z, 1.0f);
}
}
if(srgb) {
r.x = color_srgb_to_scene_linear(r.x);
r.y = color_srgb_to_scene_linear(r.y);
r.z = color_srgb_to_scene_linear(r.z);
}
#endif
return r;
}
#endif
/* Remap coordnate from 0..1 box to -1..-1 */
ccl_device_inline float3 texco_remap_square(float3 co)
{
return (co - make_float3(0.5f, 0.5f, 0.5f)) * 2.0f;
}
ccl_device void svm_node_tex_image(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint id = node.y;
uint co_offset, out_offset, alpha_offset, srgb;
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
float3 co = stack_load_float3(stack, co_offset);
float2 tex_co;
uint use_alpha = stack_valid(alpha_offset);
if(node.w == NODE_IMAGE_PROJ_SPHERE) {
co = texco_remap_square(co);
tex_co = map_to_sphere(co);
}
else if(node.w == NODE_IMAGE_PROJ_TUBE) {
co = texco_remap_square(co);
tex_co = map_to_tube(co);
}
else {
tex_co = make_float2(co.x, co.y);
}
float4 f = svm_image_texture(kg, id, tex_co.x, tex_co.y, srgb, use_alpha);
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if(stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
ccl_device void svm_node_tex_image_box(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
/* get object space normal */
float3 N = sd->N;
N = sd->N;
if(sd->object != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &N);
/* project from direction vector to barycentric coordinates in triangles */
N.x = fabsf(N.x);
N.y = fabsf(N.y);
N.z = fabsf(N.z);
N /= (N.x + N.y + N.z);
/* basic idea is to think of this as a triangle, each corner representing
* one of the 3 faces of the cube. in the corners we have single textures,
* in between we blend between two textures, and in the middle we a blend
* between three textures.
*
* the Nxyz values are the barycentric coordinates in an equilateral
* triangle, which in case of blending, in the middle has a smaller
* equilateral triangle where 3 textures blend. this divides things into
* 7 zones, with an if() test for each zone */
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
float blend = __int_as_float(node.w);
float limit = 0.5f*(1.0f + blend);
/* first test for corners with single texture */
if(N.x > limit*(N.x + N.y) && N.x > limit*(N.x + N.z)) {
weight.x = 1.0f;
}
else if(N.y > limit*(N.x + N.y) && N.y > limit*(N.y + N.z)) {
weight.y = 1.0f;
}
else if(N.z > limit*(N.x + N.z) && N.z > limit*(N.y + N.z)) {
weight.z = 1.0f;
}
else if(blend > 0.0f) {
/* in case of blending, test for mixes between two textures */
if(N.z < (1.0f - limit)*(N.y + N.x)) {
weight.x = N.x/(N.x + N.y);
weight.x = clamp((weight.x - 0.5f*(1.0f - blend))/blend, 0.0f, 1.0f);
weight.y = 1.0f - weight.x;
}
else if(N.x < (1.0f - limit)*(N.y + N.z)) {
weight.y = N.y/(N.y + N.z);
weight.y = clamp((weight.y - 0.5f*(1.0f - blend))/blend, 0.0f, 1.0f);
weight.z = 1.0f - weight.y;
}
else if(N.y < (1.0f - limit)*(N.x + N.z)) {
weight.x = N.x/(N.x + N.z);
weight.x = clamp((weight.x - 0.5f*(1.0f - blend))/blend, 0.0f, 1.0f);
weight.z = 1.0f - weight.x;
}
else {
/* last case, we have a mix between three */
weight.x = ((2.0f - limit)*N.x + (limit - 1.0f))/(2.0f*limit - 1.0f);
weight.y = ((2.0f - limit)*N.y + (limit - 1.0f))/(2.0f*limit - 1.0f);
weight.z = ((2.0f - limit)*N.z + (limit - 1.0f))/(2.0f*limit - 1.0f);
}
}
else {
/* Desperate mode, no valid choice anyway, fallback to one side.*/
weight.x = 1.0f;
}
/* now fetch textures */
uint co_offset, out_offset, alpha_offset, srgb;
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
float3 co = stack_load_float3(stack, co_offset);
uint id = node.y;
float4 f = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
uint use_alpha = stack_valid(alpha_offset);
if(weight.x > 0.0f)
f += weight.x*svm_image_texture(kg, id, co.y, co.z, srgb, use_alpha);
if(weight.y > 0.0f)
f += weight.y*svm_image_texture(kg, id, co.x, co.z, srgb, use_alpha);
if(weight.z > 0.0f)
f += weight.z*svm_image_texture(kg, id, co.y, co.x, srgb, use_alpha);
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if(stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
ccl_device void svm_node_tex_environment(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint id = node.y;
uint co_offset, out_offset, alpha_offset, srgb;
uint projection = node.w;
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
float3 co = stack_load_float3(stack, co_offset);
float2 uv;
co = normalize(co);
if(projection == 0)
uv = direction_to_equirectangular(co);
else
uv = direction_to_mirrorball(co);
uint use_alpha = stack_valid(alpha_offset);
float4 f = svm_image_texture(kg, id, uv.x, uv.y, srgb, use_alpha);
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if(stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
CCL_NAMESPACE_END