blender/intern/cycles/render/light.cpp
Brecht Van Lommel 0803119725 Cycles: merge of cycles-x branch, a major update to the renderer
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.

Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.

Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles
https://wiki.blender.org/wiki/Source/Render/Cycles

Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)

For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.

Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
2021-09-21 14:55:54 +02:00

1149 lines
35 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/device.h"
#include "render/background.h"
#include "render/film.h"
#include "render/graph.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/nodes.h"
#include "render/object.h"
#include "render/scene.h"
#include "render/shader.h"
#include "render/stats.h"
#include "integrator/shader_eval.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
#include "util/util_path.h"
#include "util/util_progress.h"
#include "util/util_task.h"
CCL_NAMESPACE_BEGIN
static void shade_background_pixels(Device *device,
DeviceScene *dscene,
int width,
int height,
vector<float3> &pixels,
Progress &progress)
{
/* Needs to be up to data for attribute access. */
device->const_copy_to("__data", &dscene->data, sizeof(dscene->data));
const int size = width * height;
pixels.resize(size);
/* Evaluate shader on device. */
ShaderEval shader_eval(device, progress);
shader_eval.eval(
SHADER_EVAL_BACKGROUND,
size,
[&](device_vector<KernelShaderEvalInput> &d_input) {
/* Fill coordinates for shading. */
KernelShaderEvalInput *d_input_data = d_input.data();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
float u = (x + 0.5f) / width;
float v = (y + 0.5f) / height;
KernelShaderEvalInput in;
in.object = OBJECT_NONE;
in.prim = PRIM_NONE;
in.u = u;
in.v = v;
d_input_data[x + y * width] = in;
}
}
return size;
},
[&](device_vector<float4> &d_output) {
/* Copy output to pixel buffer. */
float4 *d_output_data = d_output.data();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
pixels[y * width + x].x = d_output_data[y * width + x].x;
pixels[y * width + x].y = d_output_data[y * width + x].y;
pixels[y * width + x].z = d_output_data[y * width + x].z;
}
}
});
}
/* Light */
NODE_DEFINE(Light)
{
NodeType *type = NodeType::add("light", create);
static NodeEnum type_enum;
type_enum.insert("point", LIGHT_POINT);
type_enum.insert("distant", LIGHT_DISTANT);
type_enum.insert("background", LIGHT_BACKGROUND);
type_enum.insert("area", LIGHT_AREA);
type_enum.insert("spot", LIGHT_SPOT);
SOCKET_ENUM(light_type, "Type", type_enum, LIGHT_POINT);
SOCKET_COLOR(strength, "Strength", one_float3());
SOCKET_POINT(co, "Co", zero_float3());
SOCKET_VECTOR(dir, "Dir", zero_float3());
SOCKET_FLOAT(size, "Size", 0.0f);
SOCKET_FLOAT(angle, "Angle", 0.0f);
SOCKET_VECTOR(axisu, "Axis U", zero_float3());
SOCKET_FLOAT(sizeu, "Size U", 1.0f);
SOCKET_VECTOR(axisv, "Axis V", zero_float3());
SOCKET_FLOAT(sizev, "Size V", 1.0f);
SOCKET_BOOLEAN(round, "Round", false);
SOCKET_FLOAT(spread, "Spread", M_PI_F);
SOCKET_INT(map_resolution, "Map Resolution", 0);
SOCKET_FLOAT(spot_angle, "Spot Angle", M_PI_4_F);
SOCKET_FLOAT(spot_smooth, "Spot Smooth", 0.0f);
SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
SOCKET_BOOLEAN(cast_shadow, "Cast Shadow", true);
SOCKET_BOOLEAN(use_mis, "Use Mis", false);
SOCKET_BOOLEAN(use_camera, "Use Camera", true);
SOCKET_BOOLEAN(use_diffuse, "Use Diffuse", true);
SOCKET_BOOLEAN(use_glossy, "Use Glossy", true);
SOCKET_BOOLEAN(use_transmission, "Use Transmission", true);
SOCKET_BOOLEAN(use_scatter, "Use Scatter", true);
SOCKET_INT(max_bounces, "Max Bounces", 1024);
SOCKET_UINT(random_id, "Random ID", 0);
SOCKET_BOOLEAN(is_shadow_catcher, "Shadow Catcher", true);
SOCKET_BOOLEAN(is_portal, "Is Portal", false);
SOCKET_BOOLEAN(is_enabled, "Is Enabled", true);
SOCKET_NODE(shader, "Shader", Shader::get_node_type());
return type;
}
Light::Light() : Node(get_node_type())
{
dereference_all_used_nodes();
}
void Light::tag_update(Scene *scene)
{
if (is_modified()) {
scene->light_manager->tag_update(scene, LightManager::LIGHT_MODIFIED);
}
}
bool Light::has_contribution(Scene *scene)
{
if (strength == zero_float3()) {
return false;
}
if (is_portal) {
return false;
}
if (light_type == LIGHT_BACKGROUND) {
return true;
}
return (shader) ? shader->has_surface_emission : scene->default_light->has_surface_emission;
}
/* Light Manager */
LightManager::LightManager()
{
update_flags = UPDATE_ALL;
need_update_background = true;
last_background_enabled = false;
last_background_resolution = 0;
}
LightManager::~LightManager()
{
foreach (IESSlot *slot, ies_slots) {
delete slot;
}
}
bool LightManager::has_background_light(Scene *scene)
{
foreach (Light *light, scene->lights) {
if (light->light_type == LIGHT_BACKGROUND && light->is_enabled) {
return true;
}
}
return false;
}
void LightManager::test_enabled_lights(Scene *scene)
{
/* Make all lights enabled by default, and perform some preliminary checks
* needed for finer-tuning of settings (for example, check whether we've
* got portals or not).
*/
bool has_portal = false, has_background = false;
foreach (Light *light, scene->lights) {
light->is_enabled = light->has_contribution(scene);
has_portal |= light->is_portal;
has_background |= light->light_type == LIGHT_BACKGROUND;
}
bool background_enabled = false;
int background_resolution = 0;
if (has_background) {
/* Ignore background light if:
* - If unsupported on a device
* - If we don't need it (no HDRs etc.)
*/
Shader *shader = scene->background->get_shader(scene);
const bool disable_mis = !(has_portal || shader->has_surface_spatial_varying);
VLOG_IF(1, disable_mis) << "Background MIS has been disabled.\n";
foreach (Light *light, scene->lights) {
if (light->light_type == LIGHT_BACKGROUND) {
light->is_enabled = !disable_mis;
background_enabled = !disable_mis;
background_resolution = light->map_resolution;
}
}
}
if (last_background_enabled != background_enabled ||
last_background_resolution != background_resolution) {
last_background_enabled = background_enabled;
last_background_resolution = background_resolution;
need_update_background = true;
}
}
bool LightManager::object_usable_as_light(Object *object)
{
Geometry *geom = object->get_geometry();
if (geom->geometry_type != Geometry::MESH && geom->geometry_type != Geometry::VOLUME) {
return false;
}
/* Skip objects with NaNs */
if (!object->bounds.valid()) {
return false;
}
/* Skip if we are not visible for BSDFs. */
if (!(object->get_visibility() & (PATH_RAY_DIFFUSE | PATH_RAY_GLOSSY | PATH_RAY_TRANSMIT))) {
return false;
}
/* Skip if we have no emission shaders. */
/* TODO(sergey): Ideally we want to avoid such duplicated loop, since it'll
* iterate all geometry shaders twice (when counting and when calculating
* triangle area.
*/
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
if (shader->get_use_mis() && shader->has_surface_emission) {
return true;
}
}
return false;
}
void LightManager::device_update_distribution(Device *,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
progress.set_status("Updating Lights", "Computing distribution");
/* count */
size_t num_lights = 0;
size_t num_portals = 0;
size_t num_background_lights = 0;
size_t num_triangles = 0;
bool background_mis = false;
foreach (Light *light, scene->lights) {
if (light->is_enabled) {
num_lights++;
}
if (light->is_portal) {
num_portals++;
}
}
foreach (Object *object, scene->objects) {
if (progress.get_cancel())
return;
if (!object_usable_as_light(object)) {
continue;
}
/* Count triangles. */
Mesh *mesh = static_cast<Mesh *>(object->get_geometry());
size_t mesh_num_triangles = mesh->num_triangles();
for (size_t i = 0; i < mesh_num_triangles; i++) {
int shader_index = mesh->get_shader()[i];
Shader *shader = (shader_index < mesh->get_used_shaders().size()) ?
static_cast<Shader *>(mesh->get_used_shaders()[shader_index]) :
scene->default_surface;
if (shader->get_use_mis() && shader->has_surface_emission) {
num_triangles++;
}
}
}
size_t num_distribution = num_triangles + num_lights;
VLOG(1) << "Total " << num_distribution << " of light distribution primitives.";
/* emission area */
KernelLightDistribution *distribution = dscene->light_distribution.alloc(num_distribution + 1);
float totarea = 0.0f;
/* triangles */
size_t offset = 0;
int j = 0;
foreach (Object *object, scene->objects) {
if (progress.get_cancel())
return;
if (!object_usable_as_light(object)) {
j++;
continue;
}
/* Sum area. */
Mesh *mesh = static_cast<Mesh *>(object->get_geometry());
bool transform_applied = mesh->transform_applied;
Transform tfm = object->get_tfm();
int object_id = j;
int shader_flag = 0;
if (!(object->get_visibility() & PATH_RAY_CAMERA)) {
shader_flag |= SHADER_EXCLUDE_CAMERA;
}
if (!(object->get_visibility() & PATH_RAY_DIFFUSE)) {
shader_flag |= SHADER_EXCLUDE_DIFFUSE;
}
if (!(object->get_visibility() & PATH_RAY_GLOSSY)) {
shader_flag |= SHADER_EXCLUDE_GLOSSY;
}
if (!(object->get_visibility() & PATH_RAY_TRANSMIT)) {
shader_flag |= SHADER_EXCLUDE_TRANSMIT;
}
if (!(object->get_visibility() & PATH_RAY_VOLUME_SCATTER)) {
shader_flag |= SHADER_EXCLUDE_SCATTER;
}
if (!(object->get_is_shadow_catcher())) {
shader_flag |= SHADER_EXCLUDE_SHADOW_CATCHER;
}
size_t mesh_num_triangles = mesh->num_triangles();
for (size_t i = 0; i < mesh_num_triangles; i++) {
int shader_index = mesh->get_shader()[i];
Shader *shader = (shader_index < mesh->get_used_shaders().size()) ?
static_cast<Shader *>(mesh->get_used_shaders()[shader_index]) :
scene->default_surface;
if (shader->get_use_mis() && shader->has_surface_emission) {
distribution[offset].totarea = totarea;
distribution[offset].prim = i + mesh->prim_offset;
distribution[offset].mesh_light.shader_flag = shader_flag;
distribution[offset].mesh_light.object_id = object_id;
offset++;
Mesh::Triangle t = mesh->get_triangle(i);
if (!t.valid(&mesh->get_verts()[0])) {
continue;
}
float3 p1 = mesh->get_verts()[t.v[0]];
float3 p2 = mesh->get_verts()[t.v[1]];
float3 p3 = mesh->get_verts()[t.v[2]];
if (!transform_applied) {
p1 = transform_point(&tfm, p1);
p2 = transform_point(&tfm, p2);
p3 = transform_point(&tfm, p3);
}
totarea += triangle_area(p1, p2, p3);
}
}
j++;
}
float trianglearea = totarea;
/* point lights */
bool use_lamp_mis = false;
int light_index = 0;
if (num_lights > 0) {
float lightarea = (totarea > 0.0f) ? totarea / num_lights : 1.0f;
foreach (Light *light, scene->lights) {
if (!light->is_enabled)
continue;
distribution[offset].totarea = totarea;
distribution[offset].prim = ~light_index;
distribution[offset].lamp.pad = 1.0f;
distribution[offset].lamp.size = light->size;
totarea += lightarea;
if (light->light_type == LIGHT_DISTANT) {
use_lamp_mis |= (light->angle > 0.0f && light->use_mis);
}
else if (light->light_type == LIGHT_POINT || light->light_type == LIGHT_SPOT) {
use_lamp_mis |= (light->size > 0.0f && light->use_mis);
}
else if (light->light_type == LIGHT_AREA) {
use_lamp_mis |= light->use_mis;
}
else if (light->light_type == LIGHT_BACKGROUND) {
num_background_lights++;
background_mis |= light->use_mis;
}
light_index++;
offset++;
}
}
/* normalize cumulative distribution functions */
distribution[num_distribution].totarea = totarea;
distribution[num_distribution].prim = 0.0f;
distribution[num_distribution].lamp.pad = 0.0f;
distribution[num_distribution].lamp.size = 0.0f;
if (totarea > 0.0f) {
for (size_t i = 0; i < num_distribution; i++)
distribution[i].totarea /= totarea;
distribution[num_distribution].totarea = 1.0f;
}
if (progress.get_cancel())
return;
/* update device */
KernelIntegrator *kintegrator = &dscene->data.integrator;
KernelBackground *kbackground = &dscene->data.background;
KernelFilm *kfilm = &dscene->data.film;
kintegrator->use_direct_light = (totarea > 0.0f);
if (kintegrator->use_direct_light) {
/* number of emissives */
kintegrator->num_distribution = num_distribution;
/* precompute pdfs */
kintegrator->pdf_triangles = 0.0f;
kintegrator->pdf_lights = 0.0f;
/* sample one, with 0.5 probability of light or triangle */
kintegrator->num_all_lights = num_lights;
if (trianglearea > 0.0f) {
kintegrator->pdf_triangles = 1.0f / trianglearea;
if (num_lights)
kintegrator->pdf_triangles *= 0.5f;
}
if (num_lights) {
kintegrator->pdf_lights = 1.0f / num_lights;
if (trianglearea > 0.0f)
kintegrator->pdf_lights *= 0.5f;
}
kintegrator->use_lamp_mis = use_lamp_mis;
/* bit of an ugly hack to compensate for emitting triangles influencing
* amount of samples we get for this pass */
kfilm->pass_shadow_scale = 1.0f;
if (kintegrator->pdf_triangles != 0.0f)
kfilm->pass_shadow_scale /= 0.5f;
if (num_background_lights < num_lights)
kfilm->pass_shadow_scale /= (float)(num_lights - num_background_lights) / (float)num_lights;
/* CDF */
dscene->light_distribution.copy_to_device();
/* Portals */
if (num_portals > 0) {
kbackground->portal_offset = light_index;
kbackground->num_portals = num_portals;
kbackground->portal_weight = 1.0f;
}
else {
kbackground->num_portals = 0;
kbackground->portal_offset = 0;
kbackground->portal_weight = 0.0f;
}
/* Map */
kbackground->map_weight = background_mis ? 1.0f : 0.0f;
}
else {
dscene->light_distribution.free();
kintegrator->num_distribution = 0;
kintegrator->num_all_lights = 0;
kintegrator->pdf_triangles = 0.0f;
kintegrator->pdf_lights = 0.0f;
kintegrator->use_lamp_mis = false;
kbackground->num_portals = 0;
kbackground->portal_offset = 0;
kbackground->portal_weight = 0.0f;
kbackground->sun_weight = 0.0f;
kbackground->map_weight = 0.0f;
kfilm->pass_shadow_scale = 1.0f;
}
}
static void background_cdf(
int start, int end, int res_x, int res_y, const vector<float3> *pixels, float2 *cond_cdf)
{
int cdf_width = res_x + 1;
/* Conditional CDFs (rows, U direction). */
for (int i = start; i < end; i++) {
float sin_theta = sinf(M_PI_F * (i + 0.5f) / res_y);
float3 env_color = (*pixels)[i * res_x];
float ave_luminance = average(env_color);
cond_cdf[i * cdf_width].x = ave_luminance * sin_theta;
cond_cdf[i * cdf_width].y = 0.0f;
for (int j = 1; j < res_x; j++) {
env_color = (*pixels)[i * res_x + j];
ave_luminance = average(env_color);
cond_cdf[i * cdf_width + j].x = ave_luminance * sin_theta;
cond_cdf[i * cdf_width + j].y = cond_cdf[i * cdf_width + j - 1].y +
cond_cdf[i * cdf_width + j - 1].x / res_x;
}
const float cdf_total = cond_cdf[i * cdf_width + res_x - 1].y +
cond_cdf[i * cdf_width + res_x - 1].x / res_x;
/* stuff the total into the brightness value for the last entry, because
* we are going to normalize the CDFs to 0.0 to 1.0 afterwards */
cond_cdf[i * cdf_width + res_x].x = cdf_total;
if (cdf_total > 0.0f) {
const float cdf_total_inv = 1.0f / cdf_total;
for (int j = 1; j < res_x; j++) {
cond_cdf[i * cdf_width + j].y *= cdf_total_inv;
}
}
cond_cdf[i * cdf_width + res_x].y = 1.0f;
}
}
void LightManager::device_update_background(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
KernelBackground *kbackground = &dscene->data.background;
Light *background_light = NULL;
/* find background light */
foreach (Light *light, scene->lights) {
if (light->light_type == LIGHT_BACKGROUND) {
background_light = light;
break;
}
}
/* no background light found, signal renderer to skip sampling */
if (!background_light || !background_light->is_enabled) {
kbackground->map_res_x = 0;
kbackground->map_res_y = 0;
kbackground->map_weight = 0.0f;
kbackground->sun_weight = 0.0f;
kbackground->use_mis = (kbackground->portal_weight > 0.0f);
return;
}
progress.set_status("Updating Lights", "Importance map");
assert(dscene->data.integrator.use_direct_light);
int2 environment_res = make_int2(0, 0);
Shader *shader = scene->background->get_shader(scene);
int num_suns = 0;
foreach (ShaderNode *node, shader->graph->nodes) {
if (node->type == EnvironmentTextureNode::get_node_type()) {
EnvironmentTextureNode *env = (EnvironmentTextureNode *)node;
ImageMetaData metadata;
if (!env->handle.empty()) {
ImageMetaData metadata = env->handle.metadata();
environment_res.x = max(environment_res.x, metadata.width);
environment_res.y = max(environment_res.y, metadata.height);
}
}
if (node->type == SkyTextureNode::get_node_type()) {
SkyTextureNode *sky = (SkyTextureNode *)node;
if (sky->get_sky_type() == NODE_SKY_NISHITA && sky->get_sun_disc()) {
/* Ensure that the input coordinates aren't transformed before they reach the node.
* If that is the case, the logic used for sampling the sun's location does not work
* and we have to fall back to map-based sampling. */
const ShaderInput *vec_in = sky->input("Vector");
if (vec_in && vec_in->link && vec_in->link->parent) {
ShaderNode *vec_src = vec_in->link->parent;
if ((vec_src->type != TextureCoordinateNode::get_node_type()) ||
(vec_in->link != vec_src->output("Generated"))) {
environment_res.x = max(environment_res.x, 4096);
environment_res.y = max(environment_res.y, 2048);
continue;
}
}
/* Determine sun direction from lat/long and texture mapping. */
float latitude = sky->get_sun_elevation();
float longitude = M_2PI_F - sky->get_sun_rotation() + M_PI_2_F;
float3 sun_direction = make_float3(
cosf(latitude) * cosf(longitude), cosf(latitude) * sinf(longitude), sinf(latitude));
Transform sky_transform = transform_inverse(sky->tex_mapping.compute_transform());
sun_direction = transform_direction(&sky_transform, sun_direction);
/* Pack sun direction and size. */
float half_angle = sky->get_sun_size() * 0.5f;
kbackground->sun = make_float4(
sun_direction.x, sun_direction.y, sun_direction.z, half_angle);
kbackground->sun_weight = 4.0f;
environment_res.x = max(environment_res.x, 512);
environment_res.y = max(environment_res.y, 256);
num_suns++;
}
}
}
/* If there's more than one sun, fall back to map sampling instead. */
if (num_suns != 1) {
kbackground->sun_weight = 0.0f;
environment_res.x = max(environment_res.x, 4096);
environment_res.y = max(environment_res.y, 2048);
}
/* Enable MIS for background sampling if any strategy is active. */
kbackground->use_mis = (kbackground->portal_weight + kbackground->map_weight +
kbackground->sun_weight) > 0.0f;
/* get the resolution from the light's size (we stuff it in there) */
int2 res = make_int2(background_light->map_resolution, background_light->map_resolution / 2);
/* If the resolution isn't set manually, try to find an environment texture. */
if (res.x == 0) {
res = environment_res;
if (res.x > 0 && res.y > 0) {
VLOG(2) << "Automatically set World MIS resolution to " << res.x << " by " << res.y << "\n";
}
}
/* If it's still unknown, just use the default. */
if (res.x == 0 || res.y == 0) {
res = make_int2(1024, 512);
VLOG(2) << "Setting World MIS resolution to default\n";
}
kbackground->map_res_x = res.x;
kbackground->map_res_y = res.y;
vector<float3> pixels;
shade_background_pixels(device, dscene, res.x, res.y, pixels, progress);
if (progress.get_cancel())
return;
/* build row distributions and column distribution for the infinite area environment light */
int cdf_width = res.x + 1;
float2 *marg_cdf = dscene->light_background_marginal_cdf.alloc(res.y + 1);
float2 *cond_cdf = dscene->light_background_conditional_cdf.alloc(cdf_width * res.y);
double time_start = time_dt();
/* Create CDF in parallel. */
const int rows_per_task = divide_up(10240, res.x);
parallel_for(blocked_range<size_t>(0, res.y, rows_per_task),
[&](const blocked_range<size_t> &r) {
background_cdf(r.begin(), r.end(), res.x, res.y, &pixels, cond_cdf);
});
/* marginal CDFs (column, V direction, sum of rows) */
marg_cdf[0].x = cond_cdf[res.x].x;
marg_cdf[0].y = 0.0f;
for (int i = 1; i < res.y; i++) {
marg_cdf[i].x = cond_cdf[i * cdf_width + res.x].x;
marg_cdf[i].y = marg_cdf[i - 1].y + marg_cdf[i - 1].x / res.y;
}
float cdf_total = marg_cdf[res.y - 1].y + marg_cdf[res.y - 1].x / res.y;
marg_cdf[res.y].x = cdf_total;
if (cdf_total > 0.0f)
for (int i = 1; i < res.y; i++)
marg_cdf[i].y /= cdf_total;
marg_cdf[res.y].y = 1.0f;
VLOG(2) << "Background MIS build time " << time_dt() - time_start << "\n";
/* update device */
dscene->light_background_marginal_cdf.copy_to_device();
dscene->light_background_conditional_cdf.copy_to_device();
}
void LightManager::device_update_points(Device *, DeviceScene *dscene, Scene *scene)
{
int num_scene_lights = scene->lights.size();
int num_lights = 0;
foreach (Light *light, scene->lights) {
if (light->is_enabled || light->is_portal) {
num_lights++;
}
}
KernelLight *klights = dscene->lights.alloc(num_lights);
if (num_lights == 0) {
VLOG(1) << "No effective light, ignoring points update.";
return;
}
int light_index = 0;
foreach (Light *light, scene->lights) {
if (!light->is_enabled) {
continue;
}
float3 co = light->co;
Shader *shader = (light->shader) ? light->shader : scene->default_light;
int shader_id = scene->shader_manager->get_shader_id(shader);
int max_bounces = light->max_bounces;
float random = (float)light->random_id * (1.0f / (float)0xFFFFFFFF);
if (!light->cast_shadow)
shader_id &= ~SHADER_CAST_SHADOW;
if (!light->use_camera) {
shader_id |= SHADER_EXCLUDE_CAMERA;
}
if (!light->use_diffuse) {
shader_id |= SHADER_EXCLUDE_DIFFUSE;
}
if (!light->use_glossy) {
shader_id |= SHADER_EXCLUDE_GLOSSY;
}
if (!light->use_transmission) {
shader_id |= SHADER_EXCLUDE_TRANSMIT;
}
if (!light->use_scatter) {
shader_id |= SHADER_EXCLUDE_SCATTER;
}
if (!light->is_shadow_catcher) {
shader_id |= SHADER_EXCLUDE_SHADOW_CATCHER;
}
klights[light_index].type = light->light_type;
klights[light_index].strength[0] = light->strength.x;
klights[light_index].strength[1] = light->strength.y;
klights[light_index].strength[2] = light->strength.z;
if (light->light_type == LIGHT_POINT) {
shader_id &= ~SHADER_AREA_LIGHT;
float radius = light->size;
float invarea = (radius > 0.0f) ? 1.0f / (M_PI_F * radius * radius) : 1.0f;
if (light->use_mis && radius > 0.0f)
shader_id |= SHADER_USE_MIS;
klights[light_index].co[0] = co.x;
klights[light_index].co[1] = co.y;
klights[light_index].co[2] = co.z;
klights[light_index].spot.radius = radius;
klights[light_index].spot.invarea = invarea;
}
else if (light->light_type == LIGHT_DISTANT) {
shader_id &= ~SHADER_AREA_LIGHT;
float angle = light->angle / 2.0f;
float radius = tanf(angle);
float cosangle = cosf(angle);
float area = M_PI_F * radius * radius;
float invarea = (area > 0.0f) ? 1.0f / area : 1.0f;
float3 dir = light->dir;
dir = safe_normalize(dir);
if (light->use_mis && area > 0.0f)
shader_id |= SHADER_USE_MIS;
klights[light_index].co[0] = dir.x;
klights[light_index].co[1] = dir.y;
klights[light_index].co[2] = dir.z;
klights[light_index].distant.invarea = invarea;
klights[light_index].distant.radius = radius;
klights[light_index].distant.cosangle = cosangle;
}
else if (light->light_type == LIGHT_BACKGROUND) {
uint visibility = scene->background->get_visibility();
shader_id &= ~SHADER_AREA_LIGHT;
shader_id |= SHADER_USE_MIS;
if (!(visibility & PATH_RAY_DIFFUSE)) {
shader_id |= SHADER_EXCLUDE_DIFFUSE;
}
if (!(visibility & PATH_RAY_GLOSSY)) {
shader_id |= SHADER_EXCLUDE_GLOSSY;
}
if (!(visibility & PATH_RAY_TRANSMIT)) {
shader_id |= SHADER_EXCLUDE_TRANSMIT;
}
if (!(visibility & PATH_RAY_VOLUME_SCATTER)) {
shader_id |= SHADER_EXCLUDE_SCATTER;
}
}
else if (light->light_type == LIGHT_AREA) {
float3 axisu = light->axisu * (light->sizeu * light->size);
float3 axisv = light->axisv * (light->sizev * light->size);
float area = len(axisu) * len(axisv);
if (light->round) {
area *= -M_PI_4_F;
}
float invarea = (area != 0.0f) ? 1.0f / area : 1.0f;
float3 dir = light->dir;
/* Convert from spread angle 0..180 to 90..0, clamping to a minimum
* angle to avoid excessive noise. */
const float min_spread_angle = 1.0f * M_PI_F / 180.0f;
const float spread_angle = 0.5f * (M_PI_F - max(light->spread, min_spread_angle));
/* Normalization computed using:
* integrate cos(x) * (1 - tan(x) * tan(a)) * sin(x) from x = 0 to pi/2 - a. */
const float tan_spread = tanf(spread_angle);
const float normalize_spread = 2.0f / (2.0f + (2.0f * spread_angle - M_PI_F) * tan_spread);
dir = safe_normalize(dir);
if (light->use_mis && area != 0.0f)
shader_id |= SHADER_USE_MIS;
klights[light_index].co[0] = co.x;
klights[light_index].co[1] = co.y;
klights[light_index].co[2] = co.z;
klights[light_index].area.axisu[0] = axisu.x;
klights[light_index].area.axisu[1] = axisu.y;
klights[light_index].area.axisu[2] = axisu.z;
klights[light_index].area.axisv[0] = axisv.x;
klights[light_index].area.axisv[1] = axisv.y;
klights[light_index].area.axisv[2] = axisv.z;
klights[light_index].area.invarea = invarea;
klights[light_index].area.dir[0] = dir.x;
klights[light_index].area.dir[1] = dir.y;
klights[light_index].area.dir[2] = dir.z;
klights[light_index].area.tan_spread = tan_spread;
klights[light_index].area.normalize_spread = normalize_spread;
}
else if (light->light_type == LIGHT_SPOT) {
shader_id &= ~SHADER_AREA_LIGHT;
float radius = light->size;
float invarea = (radius > 0.0f) ? 1.0f / (M_PI_F * radius * radius) : 1.0f;
float spot_angle = cosf(light->spot_angle * 0.5f);
float spot_smooth = (1.0f - spot_angle) * light->spot_smooth;
float3 dir = light->dir;
dir = safe_normalize(dir);
if (light->use_mis && radius > 0.0f)
shader_id |= SHADER_USE_MIS;
klights[light_index].co[0] = co.x;
klights[light_index].co[1] = co.y;
klights[light_index].co[2] = co.z;
klights[light_index].spot.radius = radius;
klights[light_index].spot.invarea = invarea;
klights[light_index].spot.spot_angle = spot_angle;
klights[light_index].spot.spot_smooth = spot_smooth;
klights[light_index].spot.dir[0] = dir.x;
klights[light_index].spot.dir[1] = dir.y;
klights[light_index].spot.dir[2] = dir.z;
}
klights[light_index].shader_id = shader_id;
klights[light_index].max_bounces = max_bounces;
klights[light_index].random = random;
klights[light_index].tfm = light->tfm;
klights[light_index].itfm = transform_inverse(light->tfm);
light_index++;
}
/* TODO(sergey): Consider moving portals update to their own function
* keeping this one more manageable.
*/
foreach (Light *light, scene->lights) {
if (!light->is_portal)
continue;
assert(light->light_type == LIGHT_AREA);
float3 co = light->co;
float3 axisu = light->axisu * (light->sizeu * light->size);
float3 axisv = light->axisv * (light->sizev * light->size);
float area = len(axisu) * len(axisv);
if (light->round) {
area *= -M_PI_4_F;
}
float invarea = (area != 0.0f) ? 1.0f / area : 1.0f;
float3 dir = light->dir;
dir = safe_normalize(dir);
klights[light_index].co[0] = co.x;
klights[light_index].co[1] = co.y;
klights[light_index].co[2] = co.z;
klights[light_index].area.axisu[0] = axisu.x;
klights[light_index].area.axisu[1] = axisu.y;
klights[light_index].area.axisu[2] = axisu.z;
klights[light_index].area.axisv[0] = axisv.x;
klights[light_index].area.axisv[1] = axisv.y;
klights[light_index].area.axisv[2] = axisv.z;
klights[light_index].area.invarea = invarea;
klights[light_index].area.dir[0] = dir.x;
klights[light_index].area.dir[1] = dir.y;
klights[light_index].area.dir[2] = dir.z;
klights[light_index].tfm = light->tfm;
klights[light_index].itfm = transform_inverse(light->tfm);
light_index++;
}
VLOG(1) << "Number of lights sent to the device: " << light_index;
VLOG(1) << "Number of lights without contribution: " << num_scene_lights - light_index;
dscene->lights.copy_to_device();
}
void LightManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
if (!need_update())
return;
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->light.times.add_entry({"device_update", time});
}
});
VLOG(1) << "Total " << scene->lights.size() << " lights.";
/* Detect which lights are enabled, also determines if we need to update the background. */
test_enabled_lights(scene);
device_free(device, dscene, need_update_background);
device_update_points(device, dscene, scene);
if (progress.get_cancel())
return;
device_update_distribution(device, dscene, scene, progress);
if (progress.get_cancel())
return;
if (need_update_background) {
device_update_background(device, dscene, scene, progress);
if (progress.get_cancel())
return;
}
device_update_ies(dscene);
if (progress.get_cancel())
return;
update_flags = UPDATE_NONE;
need_update_background = false;
}
void LightManager::device_free(Device *, DeviceScene *dscene, const bool free_background)
{
dscene->light_distribution.free();
dscene->lights.free();
if (free_background) {
dscene->light_background_marginal_cdf.free();
dscene->light_background_conditional_cdf.free();
}
dscene->ies_lights.free();
}
void LightManager::tag_update(Scene * /*scene*/, uint32_t flag)
{
update_flags |= flag;
}
bool LightManager::need_update() const
{
return update_flags != UPDATE_NONE;
}
int LightManager::add_ies_from_file(const string &filename)
{
string content;
/* If the file can't be opened, call with an empty line */
if (filename.empty() || !path_read_text(filename.c_str(), content)) {
content = "\n";
}
return add_ies(content);
}
int LightManager::add_ies(const string &content)
{
uint hash = hash_string(content.c_str());
thread_scoped_lock ies_lock(ies_mutex);
/* Check whether this IES already has a slot. */
size_t slot;
for (slot = 0; slot < ies_slots.size(); slot++) {
if (ies_slots[slot]->hash == hash) {
ies_slots[slot]->users++;
return slot;
}
}
/* Try to find an empty slot for the new IES. */
for (slot = 0; slot < ies_slots.size(); slot++) {
if (ies_slots[slot]->users == 0 && ies_slots[slot]->hash == 0) {
break;
}
}
/* If there's no free slot, add one. */
if (slot == ies_slots.size()) {
ies_slots.push_back(new IESSlot());
}
ies_slots[slot]->ies.load(content);
ies_slots[slot]->users = 1;
ies_slots[slot]->hash = hash;
update_flags = UPDATE_ALL;
need_update_background = true;
return slot;
}
void LightManager::remove_ies(int slot)
{
thread_scoped_lock ies_lock(ies_mutex);
if (slot < 0 || slot >= ies_slots.size()) {
assert(false);
return;
}
assert(ies_slots[slot]->users > 0);
ies_slots[slot]->users--;
/* If the slot has no more users, update the device to remove it. */
if (ies_slots[slot]->users == 0) {
update_flags |= UPDATE_ALL;
need_update_background = true;
}
}
void LightManager::device_update_ies(DeviceScene *dscene)
{
/* Clear empty slots. */
foreach (IESSlot *slot, ies_slots) {
if (slot->users == 0) {
slot->hash = 0;
slot->ies.clear();
}
}
/* Shrink the slot table by removing empty slots at the end. */
int slot_end;
for (slot_end = ies_slots.size(); slot_end; slot_end--) {
if (ies_slots[slot_end - 1]->users > 0) {
/* If the preceding slot has users, we found the new end of the table. */
break;
}
else {
/* The slot will be past the new end of the table, so free it. */
delete ies_slots[slot_end - 1];
}
}
ies_slots.resize(slot_end);
if (ies_slots.size() > 0) {
int packed_size = 0;
foreach (IESSlot *slot, ies_slots) {
packed_size += slot->ies.packed_size();
}
/* ies_lights starts with an offset table that contains the offset of every slot,
* or -1 if the slot is invalid.
* Following that table, the packed valid IES lights are stored. */
float *data = dscene->ies_lights.alloc(ies_slots.size() + packed_size);
int offset = ies_slots.size();
for (int i = 0; i < ies_slots.size(); i++) {
int size = ies_slots[i]->ies.packed_size();
if (size > 0) {
data[i] = __int_as_float(offset);
ies_slots[i]->ies.pack(data + offset);
offset += size;
}
else {
data[i] = __int_as_float(-1);
}
}
dscene->ies_lights.copy_to_device();
}
}
CCL_NAMESPACE_END