blender/extern/carve/carve-util.cc
Sergey Sharybin ccf9afddba Fix T39608: Blender 2.70 crashes when performing union
This was a nasty bug which was caused by specific of how face-edge
attributes are stored in Carve.

Face pointer is used in the map key which works just fine in all
cases except for the cases when some face is getting freed after
it was stored in the map.

This might give real issues when new face is allocating because
it's possible new face would have the same address as the freed
one.

Such cases used to happen when union of separate manifolds is
needed for the operands AND jemalloc is enabled.

Solved by dropping attributes for the freed faces from the map.
Maybe not the fastest ever approach, but not sure how to make
it faster actually. Should work just fine. It only happens for
complex setups with intersecting manifolds in the operands.
2014-04-09 14:27:34 +06:00

799 lines
22 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2014 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation,
* Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "carve-util.h"
#include "carve-capi.h"
#include <cfloat>
#include <carve/csg.hpp>
#include <carve/csg_triangulator.hpp>
#include <carve/rtree.hpp>
using carve::csg::Intersections;
using carve::geom::aabb;
using carve::geom::RTreeNode;
using carve::geom3d::Vector;
using carve::math::Matrix3;
using carve::mesh::Face;
using carve::mesh::MeshSet;
using carve::triangulate::tri_idx;
using carve::triangulate::triangulate;
typedef std::map< MeshSet<3>::mesh_t*, RTreeNode<3, Face<3> *> * > RTreeCache;
typedef std::map< MeshSet<3>::mesh_t*, bool > IntersectCache;
namespace {
// Functions adopted from BLI_math.h to use Carve Vector and Matrix.
void axis_angle_normalized_to_mat3(const Vector &normal,
const double angle,
Matrix3 *matrix)
{
double nsi[3], co, si, ico;
/* now convert this to a 3x3 matrix */
co = cos(angle);
si = sin(angle);
ico = (1.0 - co);
nsi[0] = normal[0] * si;
nsi[1] = normal[1] * si;
nsi[2] = normal[2] * si;
matrix->m[0][0] = ((normal[0] * normal[0]) * ico) + co;
matrix->m[0][1] = ((normal[0] * normal[1]) * ico) + nsi[2];
matrix->m[0][2] = ((normal[0] * normal[2]) * ico) - nsi[1];
matrix->m[1][0] = ((normal[0] * normal[1]) * ico) - nsi[2];
matrix->m[1][1] = ((normal[1] * normal[1]) * ico) + co;
matrix->m[1][2] = ((normal[1] * normal[2]) * ico) + nsi[0];
matrix->m[2][0] = ((normal[0] * normal[2]) * ico) + nsi[1];
matrix->m[2][1] = ((normal[1] * normal[2]) * ico) - nsi[0];
matrix->m[2][2] = ((normal[2] * normal[2]) * ico) + co;
}
void axis_angle_to_mat3(const Vector &axis,
const double angle,
Matrix3 *matrix)
{
if (axis.length2() < FLT_EPSILON) {
*matrix = Matrix3();
return;
}
Vector nor = axis;
nor.normalize();
axis_angle_normalized_to_mat3(nor, angle, matrix);
}
inline double saacos(double fac)
{
if (fac <= -1.0) return M_PI;
else if (fac >= 1.0) return 0.0;
else return acos(fac);
}
bool axis_dominant_v3_to_m3(const Vector &normal,
Matrix3 *matrix)
{
Vector up;
Vector axis;
double angle;
up.x = 0.0;
up.y = 0.0;
up.z = 1.0;
axis = carve::geom::cross(normal, up);
angle = saacos(carve::geom::dot(normal, up));
if (angle >= FLT_EPSILON) {
if (axis.length2() < FLT_EPSILON) {
axis[0] = 0.0;
axis[1] = 1.0;
axis[2] = 0.0;
}
axis_angle_to_mat3(axis, angle, matrix);
return true;
}
else {
*matrix = Matrix3();
return false;
}
}
void meshset_minmax(const MeshSet<3> *mesh,
Vector *min,
Vector *max)
{
for (size_t i = 0; i < mesh->vertex_storage.size(); ++i) {
min->x = std::min(min->x, mesh->vertex_storage[i].v.x);
min->y = std::min(min->y, mesh->vertex_storage[i].v.y);
min->z = std::min(min->z, mesh->vertex_storage[i].v.z);
max->x = std::max(max->x, mesh->vertex_storage[i].v.x);
max->y = std::max(max->y, mesh->vertex_storage[i].v.y);
max->z = std::max(max->z, mesh->vertex_storage[i].v.z);
}
}
} // namespace
void carve_getRescaleMinMax(const MeshSet<3> *left,
const MeshSet<3> *right,
Vector *min,
Vector *max)
{
min->x = max->x = left->vertex_storage[0].v.x;
min->y = max->y = left->vertex_storage[0].v.y;
min->z = max->z = left->vertex_storage[0].v.z;
meshset_minmax(left, min, max);
meshset_minmax(right, min, max);
// Make sure we don't scale object with zero scale.
if (std::abs(min->x - max->x) < carve::EPSILON) {
min->x = -1.0;
max->x = 1.0;
}
if (std::abs(min->y - max->y) < carve::EPSILON) {
min->y = -1.0;
max->y = 1.0;
}
if (std::abs(min->z - max->z) < carve::EPSILON) {
min->z = -1.0;
max->z = 1.0;
}
}
namespace {
void copyMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes,
std::vector<MeshSet<3>::mesh_t*> *new_meshes)
{
std::vector<MeshSet<3>::mesh_t*>::const_iterator it = meshes.begin();
new_meshes->reserve(meshes.size());
for (; it != meshes.end(); it++) {
MeshSet<3>::mesh_t *mesh = *it;
MeshSet<3>::mesh_t *new_mesh = new MeshSet<3>::mesh_t(mesh->faces);
new_meshes->push_back(new_mesh);
}
}
MeshSet<3> *meshSetFromMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes)
{
std::vector<MeshSet<3>::mesh_t*> new_meshes;
copyMeshes(meshes, &new_meshes);
return new MeshSet<3>(new_meshes);
}
MeshSet<3> *meshSetFromTwoMeshes(const std::vector<MeshSet<3>::mesh_t*> &left_meshes,
const std::vector<MeshSet<3>::mesh_t*> &right_meshes)
{
std::vector<MeshSet<3>::mesh_t*> new_meshes;
copyMeshes(left_meshes, &new_meshes);
copyMeshes(right_meshes, &new_meshes);
return new MeshSet<3>(new_meshes);
}
bool checkEdgeFaceIntersections_do(Intersections &intersections,
MeshSet<3>::face_t *face_a,
MeshSet<3>::edge_t *edge_b)
{
if (intersections.intersects(edge_b, face_a))
return true;
carve::mesh::MeshSet<3>::vertex_t::vector_t _p;
if (face_a->simpleLineSegmentIntersection(carve::geom3d::LineSegment(edge_b->v1()->v, edge_b->v2()->v), _p))
return true;
return false;
}
bool checkEdgeFaceIntersections(Intersections &intersections,
MeshSet<3>::face_t *face_a,
MeshSet<3>::face_t *face_b)
{
MeshSet<3>::edge_t *edge_b;
edge_b = face_b->edge;
do {
if (checkEdgeFaceIntersections_do(intersections, face_a, edge_b))
return true;
edge_b = edge_b->next;
} while (edge_b != face_b->edge);
return false;
}
inline bool facesAreCoplanar(const MeshSet<3>::face_t *a, const MeshSet<3>::face_t *b)
{
carve::geom3d::Ray temp;
// XXX: Find a better definition. This may be a source of problems
// if floating point inaccuracies cause an incorrect answer.
return !carve::geom3d::planeIntersection(a->plane, b->plane, temp);
}
bool checkMeshSetInterseciton_do(Intersections &intersections,
const RTreeNode<3, Face<3> *> *a_node,
const RTreeNode<3, Face<3> *> *b_node,
bool descend_a = true)
{
if (!a_node->bbox.intersects(b_node->bbox)) {
return false;
}
if (a_node->child && (descend_a || !b_node->child)) {
for (RTreeNode<3, Face<3> *> *node = a_node->child; node; node = node->sibling) {
if (checkMeshSetInterseciton_do(intersections, node, b_node, false)) {
return true;
}
}
}
else if (b_node->child) {
for (RTreeNode<3, Face<3> *> *node = b_node->child; node; node = node->sibling) {
if (checkMeshSetInterseciton_do(intersections, a_node, node, true)) {
return true;
}
}
}
else {
for (size_t i = 0; i < a_node->data.size(); ++i) {
MeshSet<3>::face_t *fa = a_node->data[i];
aabb<3> aabb_a = fa->getAABB();
if (aabb_a.maxAxisSeparation(b_node->bbox) > carve::EPSILON) {
continue;
}
for (size_t j = 0; j < b_node->data.size(); ++j) {
MeshSet<3>::face_t *fb = b_node->data[j];
aabb<3> aabb_b = fb->getAABB();
if (aabb_b.maxAxisSeparation(aabb_a) > carve::EPSILON) {
continue;
}
std::pair<double, double> a_ra = fa->rangeInDirection(fa->plane.N, fa->edge->vert->v);
std::pair<double, double> b_ra = fb->rangeInDirection(fa->plane.N, fa->edge->vert->v);
if (carve::rangeSeparation(a_ra, b_ra) > carve::EPSILON) {
continue;
}
std::pair<double, double> a_rb = fa->rangeInDirection(fb->plane.N, fb->edge->vert->v);
std::pair<double, double> b_rb = fb->rangeInDirection(fb->plane.N, fb->edge->vert->v);
if (carve::rangeSeparation(a_rb, b_rb) > carve::EPSILON) {
continue;
}
if (!facesAreCoplanar(fa, fb)) {
if (checkEdgeFaceIntersections(intersections, fa, fb)) {
return true;
}
}
}
}
}
return false;
}
bool checkMeshSetInterseciton(RTreeNode<3, Face<3> *> *rtree_a, RTreeNode<3, Face<3> *> *rtree_b)
{
Intersections intersections;
return checkMeshSetInterseciton_do(intersections, rtree_a, rtree_b);
}
void getIntersectedOperandMeshes(std::vector<MeshSet<3>::mesh_t*> *meshes,
const MeshSet<3>::aabb_t &otherAABB,
std::vector<MeshSet<3>::mesh_t*> *operandMeshes,
RTreeCache *rtree_cache,
IntersectCache *intersect_cache)
{
std::vector<MeshSet<3>::mesh_t*>::iterator it = meshes->begin();
std::vector< RTreeNode<3, Face<3> *> *> meshRTree;
while (it != meshes->end()) {
MeshSet<3>::mesh_t *mesh = *it;
bool isAdded = false;
RTreeNode<3, Face<3> *> *rtree;
bool intersects;
RTreeCache::iterator rtree_found = rtree_cache->find(mesh);
if (rtree_found != rtree_cache->end()) {
rtree = rtree_found->second;
}
else {
rtree = RTreeNode<3, Face<3> *>::construct_STR(mesh->faces.begin(), mesh->faces.end(), 4, 4);
(*rtree_cache)[mesh] = rtree;
}
IntersectCache::iterator intersect_found = intersect_cache->find(mesh);
if (intersect_found != intersect_cache->end()) {
intersects = intersect_found->second;
}
else {
intersects = rtree->bbox.intersects(otherAABB);
(*intersect_cache)[mesh] = intersects;
}
if (intersects) {
bool isIntersect = false;
std::vector<MeshSet<3>::mesh_t*>::iterator operand_it = operandMeshes->begin();
std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
for (; operand_it!=operandMeshes->end(); operand_it++, tree_it++) {
RTreeNode<3, Face<3> *> *operandRTree = *tree_it;
if (checkMeshSetInterseciton(rtree, operandRTree)) {
isIntersect = true;
break;
}
}
if (!isIntersect) {
operandMeshes->push_back(mesh);
meshRTree.push_back(rtree);
it = meshes->erase(it);
isAdded = true;
}
}
if (!isAdded) {
//delete rtree;
it++;
}
}
std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
for (; tree_it != meshRTree.end(); tree_it++) {
//delete *tree_it;
}
}
MeshSet<3> *getIntersectedOperand(std::vector<MeshSet<3>::mesh_t*> *meshes,
const MeshSet<3>::aabb_t &otherAABB,
RTreeCache *rtree_cache,
IntersectCache *intersect_cache)
{
std::vector<MeshSet<3>::mesh_t*> operandMeshes;
getIntersectedOperandMeshes(meshes, otherAABB, &operandMeshes, rtree_cache, intersect_cache);
if (operandMeshes.size() == 0)
return NULL;
return meshSetFromMeshes(operandMeshes);
}
MeshSet<3> *unionIntersectingMeshes(carve::csg::CSG *csg,
MeshSet<3> *poly,
const MeshSet<3>::aabb_t &otherAABB)
{
if (poly->meshes.size() <= 1) {
return poly;
}
std::vector<MeshSet<3>::mesh_t*> orig_meshes =
std::vector<MeshSet<3>::mesh_t*>(poly->meshes.begin(), poly->meshes.end());
RTreeCache rtree_cache;
IntersectCache intersect_cache;
MeshSet<3> *left = getIntersectedOperand(&orig_meshes,
otherAABB,
&rtree_cache,
&intersect_cache);
if (!left) {
// No maniforlds which intersects another object at all.
return poly;
}
while (orig_meshes.size()) {
MeshSet<3> *right = getIntersectedOperand(&orig_meshes,
otherAABB,
&rtree_cache,
&intersect_cache);
if (!right) {
// No more intersecting manifolds which intersects other object
break;
}
try {
if (left->meshes.size()==0) {
delete left;
left = right;
}
else {
MeshSet<3> *result = csg->compute(left, right,
carve::csg::CSG::UNION,
NULL, carve::csg::CSG::CLASSIFY_EDGE);
delete left;
delete right;
left = result;
}
}
catch (carve::exception e) {
std::cerr << "CSG failed, exception " << e.str() << std::endl;
MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, right->meshes);
delete left;
delete right;
left = result;
}
catch (...) {
delete left;
delete right;
throw "Unknown error in Carve library";
}
}
for (RTreeCache::iterator it = rtree_cache.begin();
it != rtree_cache.end();
it++)
{
delete it->second;
}
// Append all meshes which doesn't have intersection with another operand as-is.
if (orig_meshes.size()) {
MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, orig_meshes);
delete left;
left = result;
}
return left;
}
} // namespace
// TODO(sergey): This function is to be totally re-implemented to make it
// more clear what's going on and hopefully optimize it as well.
bool carve_unionIntersections(carve::csg::CSG *csg,
MeshSet<3> **left_r,
MeshSet<3> **right_r)
{
MeshSet<3> *left = *left_r, *right = *right_r;
bool changed = false;
if (left->meshes.size() == 1 && right->meshes.size() == 0) {
return false;
}
MeshSet<3>::aabb_t leftAABB = left->getAABB();
MeshSet<3>::aabb_t rightAABB = right->getAABB();;
left = unionIntersectingMeshes(csg, left, rightAABB);
right = unionIntersectingMeshes(csg, right, leftAABB);
if (left != *left_r) {
changed = true;
delete *left_r;
}
if (right != *right_r) {
changed = true;
delete *right_r;
}
*left_r = left;
*right_r = right;
return changed;
}
static inline void add_newell_cross_v3_v3v3(const Vector &v_prev,
const Vector &v_curr,
Vector *n)
{
(*n)[0] += (v_prev[1] - v_curr[1]) * (v_prev[2] + v_curr[2]);
(*n)[1] += (v_prev[2] - v_curr[2]) * (v_prev[0] + v_curr[0]);
(*n)[2] += (v_prev[0] - v_curr[0]) * (v_prev[1] + v_curr[1]);
}
// Axis matrix is being set for non-flat ngons only.
bool carve_checkPolyPlanarAndGetNormal(const std::vector<Vector> &vertices,
const int verts_per_poly,
const int *verts_of_poly,
Matrix3 *axis_matrix_r)
{
if (verts_per_poly == 3) {
// Triangles are always planar.
return true;
}
else if (verts_per_poly == 4) {
// Presumably faster than using generig n-gon check for quads.
const Vector &v1 = vertices[verts_of_poly[0]],
&v2 = vertices[verts_of_poly[1]],
&v3 = vertices[verts_of_poly[2]],
&v4 = vertices[verts_of_poly[3]];
Vector vec1, vec2, vec3, cross;
vec1 = v2 - v1;
vec2 = v4 - v1;
vec3 = v3 - v1;
cross = carve::geom::cross(vec1, vec2);
double production = carve::geom::dot(cross, vec3);
// TODO(sergey): Check on whether we could have length-independent
// magnitude here.
double magnitude = 1e-3 * cross.length2();
return fabs(production) < magnitude;
}
else {
const Vector *vert_prev = &vertices[verts_of_poly[verts_per_poly - 1]];
const Vector *vert_curr = &vertices[verts_of_poly[0]];
Vector normal = carve::geom::VECTOR(0.0, 0.0, 0.0);
for (int i = 0; i < verts_per_poly; i++) {
add_newell_cross_v3_v3v3(*vert_prev, *vert_curr, &normal);
vert_prev = vert_curr;
vert_curr = &vertices[verts_of_poly[(i + 1) % verts_per_poly]];
}
if (normal.length2() < FLT_EPSILON) {
// Degenerated face, couldn't triangulate properly anyway.
return true;
}
else {
double magnitude = normal.length2();
normal.normalize();
axis_dominant_v3_to_m3(normal, axis_matrix_r);
Vector first_projected = *axis_matrix_r * vertices[verts_of_poly[0]];
double min_z = first_projected[2], max_z = first_projected[2];
for (int i = 1; i < verts_per_poly; i++) {
const Vector &vertex = vertices[verts_of_poly[i]];
Vector projected = *axis_matrix_r * vertex;
if (projected[2] < min_z) {
min_z = projected[2];
}
if (projected[2] > max_z) {
max_z = projected[2];
}
}
if (std::abs(min_z - max_z) > FLT_EPSILON * magnitude) {
return false;
}
}
return true;
}
return false;
}
namespace {
int triangulateNGon_carveTriangulator(const std::vector<Vector> &vertices,
const int verts_per_poly,
const int *verts_of_poly,
const Matrix3 &axis_matrix,
std::vector<tri_idx> *triangles)
{
// Project vertices to 2D plane.
Vector projected;
std::vector<carve::geom::vector<2> > poly_2d;
poly_2d.reserve(verts_per_poly);
for (int i = 0; i < verts_per_poly; ++i) {
projected = axis_matrix * vertices[verts_of_poly[i]];
poly_2d.push_back(carve::geom::VECTOR(projected[0], projected[1]));
}
carve::triangulate::triangulate(poly_2d, *triangles);
carve::triangulate::improve(poly_2d, *triangles);
return triangles->size();
}
int triangulateNGon_importerTriangulator(struct ImportMeshData *import_data,
CarveMeshImporter *mesh_importer,
const std::vector<Vector> &vertices,
const int verts_per_poly,
const int *verts_of_poly,
const Matrix3 &axis_matrix,
std::vector<tri_idx> *triangles)
{
typedef float Vector2D[2];
typedef unsigned int Triangle[3];
// Project vertices to 2D plane.
Vector2D *poly_2d = new Vector2D[verts_per_poly];
Vector projected;
for (int i = 0; i < verts_per_poly; ++i) {
projected = axis_matrix * vertices[verts_of_poly[i]];
poly_2d[i][0] = projected[0];
poly_2d[i][1] = projected[1];
}
Triangle *api_triangles = new Triangle[verts_per_poly - 2];
int num_triangles =
mesh_importer->triangulate2DPoly(import_data,
poly_2d,
verts_per_poly,
api_triangles);
triangles->reserve(num_triangles);
for (int i = 0; i < num_triangles; ++i) {
triangles->push_back(tri_idx(api_triangles[i][0],
api_triangles[i][1],
api_triangles[i][2]));
}
delete [] poly_2d;
delete [] api_triangles;
return num_triangles;
}
template <typename T>
void sortThreeNumbers(T &a, T &b, T &c)
{
if (a > b)
std::swap(a, b);
if (b > c)
std::swap(b, c);
if (a > b)
std::swap(a, b);
}
bool pushTriangle(int v1, int v2, int v3,
std::vector<int> *face_indices,
TrianglesStorage *triangles_storage)
{
tri_idx triangle(v1, v2, v3);
sortThreeNumbers(triangle.a, triangle.b, triangle.c);
assert(triangle.a < triangle.b);
assert(triangle.b < triangle.c);
if (triangles_storage->find(triangle) == triangles_storage->end()) {
face_indices->push_back(3);
face_indices->push_back(v1);
face_indices->push_back(v2);
face_indices->push_back(v3);
triangles_storage->insert(triangle);
return true;
}
else {
return false;
}
}
} // namespace
int carve_triangulatePoly(struct ImportMeshData *import_data,
CarveMeshImporter *mesh_importer,
const std::vector<Vector> &vertices,
const int verts_per_poly,
const int *verts_of_poly,
const Matrix3 &axis_matrix,
std::vector<int> *face_indices,
TrianglesStorage *triangles_storage)
{
int num_triangles = 0;
assert(verts_per_poly > 3);
if (verts_per_poly == 4) {
// Quads we triangulate by 1-3 diagonal, it is an original behavior
// of boolean modifier.
//
// TODO(sergey): Consider using shortest diagonal here. However
// display code in Blende use static 1-3 split, so some experiments
// are needed here.
if (pushTriangle(verts_of_poly[0],
verts_of_poly[1],
verts_of_poly[2],
face_indices,
triangles_storage))
{
num_triangles++;
}
if (pushTriangle(verts_of_poly[0],
verts_of_poly[2],
verts_of_poly[3],
face_indices,
triangles_storage))
{
num_triangles++;
}
}
else {
std::vector<tri_idx> triangles;
triangles.reserve(verts_per_poly - 2);
// Make triangulator callback optional so we could do some tests
// in the future.
if (mesh_importer->triangulate2DPoly) {
triangulateNGon_importerTriangulator(import_data,
mesh_importer,
vertices,
verts_per_poly,
verts_of_poly,
axis_matrix,
&triangles);
}
else {
triangulateNGon_carveTriangulator(vertices,
verts_per_poly,
verts_of_poly,
axis_matrix,
&triangles);
}
for (int i = 0; i < triangles.size(); ++i) {
int v1 = triangles[i].a,
v2 = triangles[i].b,
v3 = triangles[i].c;
// Sanity check of the triangle.
assert(v1 != v2);
assert(v1 != v3);
assert(v2 != v3);
assert(v1 < verts_per_poly);
assert(v2 < verts_per_poly);
assert(v3 < verts_per_poly);
if (pushTriangle(verts_of_poly[v1],
verts_of_poly[v2],
verts_of_poly[v3],
face_indices,
triangles_storage))
{
num_triangles++;
}
}
}
return num_triangles;
}