blender/intern/cycles/scene/alembic.h
Kévin Dietrich 4425e0cd64 Subdivision: add support for vertex creasing
This adds vertex creasing support for OpenSubDiv for modeling, rendering,
Alembic and USD I/O.

For modeling, vertex creasing follows the edge creasing implementation with an
operator accessible through the Vertex menu in Edit Mode, and some parameter in
the properties panel. The option in the Subsurf and Multires to use edge
creasing also affects vertex creasing.

The vertex crease data is stored as a CustomData layer, unlike edge creases
which for now are stored in `MEdge`, but will in the future also be moved to
a `CustomData` layer. See comments for details on the difference in behavior
for the `CD_CREASE` layer between egdes and vertices.

For Cycles this adds sockets on the Mesh node to hold data about which vertices
are creased (one socket for the indices, one for the weigths).

Viewport rendering of vertex creasing reuses the same color scheme as for edges
and creased vertices are drawn bigger than uncreased vertices.

For Alembic and USD, vertex crease support follows the edge crease
implementation, they are always read, but only exported if a `Subsurf` modifier
is present on the Mesh.

Reviewed By: brecht, fclem, sergey, sybren, campbellbarton

Differential Revision: https://developer.blender.org/D10145
2022-01-20 12:21:34 +01:00

585 lines
17 KiB
C++

/*
* Copyright 2011-2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "graph/node.h"
#include "scene/attribute.h"
#include "scene/procedural.h"
#include "util/set.h"
#include "util/transform.h"
#include "util/vector.h"
#ifdef WITH_ALEMBIC
# include <Alembic/AbcCoreFactory/All.h>
# include <Alembic/AbcGeom/All.h>
CCL_NAMESPACE_BEGIN
class AlembicProcedural;
class Geometry;
class Object;
class Progress;
class Shader;
using MatrixSampleMap = std::map<Alembic::Abc::chrono_t, Alembic::Abc::M44d>;
struct MatrixSamplesData {
MatrixSampleMap *samples = nullptr;
Alembic::AbcCoreAbstract::TimeSamplingPtr time_sampling;
};
/* Helpers to detect if some type is a `ccl::array`. */
template<typename> struct is_array : public std::false_type {
};
template<typename T> struct is_array<array<T>> : public std::true_type {
};
/* Holds the data for a cache lookup at a given time, as well as information to
* help disambiguate successes or failures to get data from the cache. */
template<typename T> class CacheLookupResult {
enum class State {
NEW_DATA,
ALREADY_LOADED,
NO_DATA_FOR_TIME,
};
T *data;
State state;
protected:
/* Prevent default construction outside of the class: for a valid result, we
* should use the static functions below. */
CacheLookupResult() = default;
public:
static CacheLookupResult new_data(T *data_)
{
CacheLookupResult result;
result.data = data_;
result.state = State::NEW_DATA;
return result;
}
static CacheLookupResult no_data_found_for_time()
{
CacheLookupResult result;
result.data = nullptr;
result.state = State::NO_DATA_FOR_TIME;
return result;
}
static CacheLookupResult already_loaded()
{
CacheLookupResult result;
result.data = nullptr;
result.state = State::ALREADY_LOADED;
return result;
}
/* This should only be call if new data is available. */
const T &get_data() const
{
assert(state == State::NEW_DATA);
assert(data != nullptr);
return *data;
}
T *get_data_or_null() const
{
// data_ should already be null if there is no new data so no need to check
return data;
}
bool has_new_data() const
{
return state == State::NEW_DATA;
}
bool has_already_loaded() const
{
return state == State::ALREADY_LOADED;
}
bool has_no_data_for_time() const
{
return state == State::NO_DATA_FOR_TIME;
}
};
/* Store the data set for an animation at every time points, or at the beginning of the animation
* for constant data.
*
* The data is supposed to be stored in chronological order, and is looked up using the current
* animation time in seconds using the TimeSampling from the Alembic property. */
template<typename T> class DataStore {
/* Holds information to map a cache entry for a given time to an index into the data array. */
struct TimeIndexPair {
/* Frame time for this entry. */
double time = 0;
/* Frame time for the data pointed to by `index`. */
double source_time = 0;
/* Index into the data array. */
size_t index = 0;
};
/* This is the actual data that is stored. We deduplicate data across frames to avoid storing
* values if they have not changed yet (e.g. the triangles for a building before fracturing, or a
* fluid simulation before a break or splash) */
vector<T> data{};
/* This is used to map they entry for a given time to an index into the data array, multiple
* frames can point to the same index. */
vector<TimeIndexPair> index_data_map{};
Alembic::AbcCoreAbstract::TimeSampling time_sampling{};
double last_loaded_time = std::numeric_limits<double>::max();
public:
/* Keys used to compare values. */
Alembic::AbcCoreAbstract::ArraySample::Key key1;
Alembic::AbcCoreAbstract::ArraySample::Key key2;
void set_time_sampling(Alembic::AbcCoreAbstract::TimeSampling time_sampling_)
{
time_sampling = time_sampling_;
}
Alembic::AbcCoreAbstract::TimeSampling get_time_sampling() const
{
return time_sampling;
}
/* Get the data for the specified time.
* Return nullptr if there is no data or if the data for this time was already loaded. */
CacheLookupResult<T> data_for_time(double time)
{
if (size() == 0) {
return CacheLookupResult<T>::no_data_found_for_time();
}
const TimeIndexPair &index = get_index_for_time(time);
if (index.index == -1ul) {
return CacheLookupResult<T>::no_data_found_for_time();
}
if (last_loaded_time == index.time || last_loaded_time == index.source_time) {
return CacheLookupResult<T>::already_loaded();
}
last_loaded_time = index.source_time;
assert(index.index < data.size());
return CacheLookupResult<T>::new_data(&data[index.index]);
}
/* get the data for the specified time, but do not check if the data was already loaded for this
* time return nullptr if there is no data */
CacheLookupResult<T> data_for_time_no_check(double time)
{
if (size() == 0) {
return CacheLookupResult<T>::no_data_found_for_time();
}
const TimeIndexPair &index = get_index_for_time(time);
if (index.index == -1ul) {
return CacheLookupResult<T>::no_data_found_for_time();
}
assert(index.index < data.size());
return CacheLookupResult<T>::new_data(&data[index.index]);
}
void add_data(T &data_, double time)
{
index_data_map.push_back({time, time, data.size()});
if constexpr (is_array<T>::value) {
data.emplace_back();
data.back().steal_data(data_);
return;
}
data.push_back(data_);
}
void reuse_data_for_last_time(double time)
{
const TimeIndexPair &data_index = index_data_map.back();
index_data_map.push_back({time, data_index.source_time, data_index.index});
}
void add_no_data(double time)
{
index_data_map.push_back({time, time, -1ul});
}
bool is_constant() const
{
return data.size() <= 1;
}
size_t size() const
{
return data.size();
}
void clear()
{
invalidate_last_loaded_time();
data.clear();
index_data_map.clear();
}
void invalidate_last_loaded_time()
{
last_loaded_time = std::numeric_limits<double>::max();
}
/* Copy the data for the specified time to the node's socket. If there is no
* data for this time or it was already loaded, do nothing. */
void copy_to_socket(double time, Node *node, const SocketType *socket)
{
CacheLookupResult<T> result = data_for_time(time);
if (!result.has_new_data()) {
return;
}
/* TODO(kevindietrich): arrays are emptied when passed to the sockets, so for now we copy the
* arrays to avoid reloading the data */
T value = result.get_data();
node->set(*socket, value);
}
size_t memory_used() const
{
if constexpr (is_array<T>::value) {
size_t mem_used = 0;
for (const T &array : data) {
mem_used += array.size() * sizeof(array[0]);
}
return mem_used;
}
return data.size() * sizeof(T);
}
private:
const TimeIndexPair &get_index_for_time(double time) const
{
std::pair<size_t, Alembic::Abc::chrono_t> index_pair;
index_pair = time_sampling.getNearIndex(time, index_data_map.size());
return index_data_map[index_pair.first];
}
};
/* Actual cache for the stored data.
* This caches the topological, transformation, and attribute data for a Mesh node or a Hair node
* inside of DataStores.
*/
struct CachedData {
DataStore<Transform> transforms{};
/* mesh data */
DataStore<array<float3>> vertices;
DataStore<array<int3>> triangles{};
/* triangle "loops" are the polygons' vertices indices used for indexing face varying attributes
* (like UVs) */
DataStore<array<int>> uv_loops{};
DataStore<array<int>> shader{};
/* subd data */
DataStore<array<int>> subd_start_corner;
DataStore<array<int>> subd_num_corners;
DataStore<array<bool>> subd_smooth;
DataStore<array<int>> subd_ptex_offset;
DataStore<array<int>> subd_face_corners;
DataStore<int> num_ngons;
DataStore<array<int>> subd_creases_edge;
DataStore<array<float>> subd_creases_weight;
DataStore<array<int>> subd_vertex_crease_indices;
DataStore<array<float>> subd_vertex_crease_weights;
/* hair data */
DataStore<array<float3>> curve_keys;
DataStore<array<float>> curve_radius;
DataStore<array<int>> curve_first_key;
DataStore<array<int>> curve_shader;
/* point data */
DataStore<array<float3>> points;
DataStore<array<float>> radiuses;
DataStore<array<int>> points_shader;
struct CachedAttribute {
AttributeStandard std;
AttributeElement element;
TypeDesc type_desc;
ustring name;
DataStore<array<char>> data{};
};
vector<CachedAttribute> attributes{};
void clear();
CachedAttribute &add_attribute(const ustring &name,
const Alembic::Abc::TimeSampling &time_sampling);
bool is_constant() const;
void invalidate_last_loaded_time(bool attributes_only = false);
void set_time_sampling(Alembic::AbcCoreAbstract::TimeSampling time_sampling);
size_t memory_used() const;
};
/* Representation of an Alembic object for the AlembicProcedural.
*
* The AlembicObject holds the path to the Alembic IObject inside of the archive that is desired
* for rendering, as well as the list of shaders that it is using.
*
* The names of the shaders should correspond to the names of the FaceSets inside of the Alembic
* archive for per-triangle shader association. If there is no FaceSets, or the names do not
* match, the first shader is used for rendering for all triangles.
*/
class AlembicObject : public Node {
public:
NODE_DECLARE
/* Path to the IObject inside of the archive. */
NODE_SOCKET_API(ustring, path)
/* Shaders used for rendering. */
NODE_SOCKET_API_ARRAY(array<Node *>, used_shaders)
/* Treat this subdivision object as a regular polygon mesh, so no subdivision will be performed.
*/
NODE_SOCKET_API(bool, ignore_subdivision)
/* Maximum number of subdivisions for ISubD objects. */
NODE_SOCKET_API(int, subd_max_level)
/* Finest level of detail (in pixels) for the subdivision. */
NODE_SOCKET_API(float, subd_dicing_rate)
/* Scale the radius of points and curves. */
NODE_SOCKET_API(float, radius_scale)
AlembicObject();
~AlembicObject();
private:
friend class AlembicProcedural;
void set_object(Object *object);
Object *get_object();
void load_data_in_cache(CachedData &cached_data,
AlembicProcedural *proc,
Alembic::AbcGeom::IPolyMeshSchema &schema,
Progress &progress);
void load_data_in_cache(CachedData &cached_data,
AlembicProcedural *proc,
Alembic::AbcGeom::ISubDSchema &schema,
Progress &progress);
void load_data_in_cache(CachedData &cached_data,
AlembicProcedural *proc,
const Alembic::AbcGeom::ICurvesSchema &schema,
Progress &progress);
bool has_data_loaded() const;
/* Enumeration used to speed up the discrimination of an IObject as IObject::matches() methods
* are too expensive and show up in profiles. */
enum AbcSchemaType {
INVALID,
POLY_MESH,
SUBD,
CURVES,
POINTS,
};
bool need_shader_update = true;
AlembicObject *instance_of = nullptr;
Alembic::AbcCoreAbstract::TimeSamplingPtr xform_time_sampling;
MatrixSampleMap xform_samples;
Alembic::AbcGeom::IObject iobject;
/* Set if the path points to a valid IObject whose type is supported. */
AbcSchemaType schema_type;
CachedData &get_cached_data()
{
return cached_data_;
}
bool is_constant() const
{
return cached_data_.is_constant();
}
void clear_cache()
{
cached_data_.clear();
}
Object *object = nullptr;
bool data_loaded = false;
CachedData cached_data_;
void setup_transform_cache(CachedData &cached_data, float scale);
AttributeRequestSet get_requested_attributes();
};
/* Procedural to render objects from a single Alembic archive.
*
* Every object desired to be rendered should be passed as an AlembicObject through the objects
* socket.
*
* This procedural will load the data set for the entire animation in memory on the first frame,
* and directly set the data for the new frames on the created Nodes if needed. This allows for
* faster updates between frames as it avoids reseeking the data on disk.
*/
class AlembicProcedural : public Procedural {
Alembic::AbcGeom::IArchive archive;
bool objects_loaded;
Scene *scene_;
public:
NODE_DECLARE
/* The file path to the Alembic archive */
NODE_SOCKET_API(ustring, filepath)
/* Layers for the Alembic archive. Layers are in the order in which they override data, with the
* latter elements overriding the former ones. */
NODE_SOCKET_API_ARRAY(array<ustring>, layers)
/* The current frame to render. */
NODE_SOCKET_API(float, frame)
/* The first frame to load data for. */
NODE_SOCKET_API(float, start_frame)
/* The last frame to load data for. */
NODE_SOCKET_API(float, end_frame)
/* Subtracted to the current frame. */
NODE_SOCKET_API(float, frame_offset)
/* The frame rate used for rendering in units of frames per second. */
NODE_SOCKET_API(float, frame_rate)
/* List of AlembicObjects to render. */
NODE_SOCKET_API_ARRAY(array<Node *>, objects)
/* Set the default radius to use for curves when the Alembic Curves Schemas do not have radius
* information. */
NODE_SOCKET_API(float, default_radius)
/* Multiplier to account for differences in default units for measuring objects in various
* software. */
NODE_SOCKET_API(float, scale)
/* Cache controls */
NODE_SOCKET_API(bool, use_prefetch)
/* Memory limit for the cache, if the data does not fit within this limit, rendering is aborted.
*/
NODE_SOCKET_API(int, prefetch_cache_size)
AlembicProcedural();
~AlembicProcedural();
/* Populates the Cycles scene with Nodes for every contained AlembicObject on the first
* invocation, and updates the data on subsequent invocations if the frame changed. */
void generate(Scene *scene, Progress &progress);
/* Tag for an update only if something was modified. */
void tag_update(Scene *scene);
/* This should be called by scene exporters to request the rendering of an object located
* in the Alembic archive at the given path.
*
* Since we lazily load object, the function does not validate the existence of the object
* in the archive. If no objects with such path if found in the archive during the next call
* to `generate`, it will be ignored.
*
* Returns a pointer to an existing or a newly created AlembicObject for the given path. */
AlembicObject *get_or_create_object(const ustring &path);
private:
/* Add an object to our list of objects, and tag the socket as modified. */
void add_object(AlembicObject *object);
/* Load the data for all the objects whose data has not yet been loaded. */
void load_objects(Progress &progress);
/* Traverse the Alembic hierarchy to lookup the IObjects for the AlembicObjects that were
* specified in our objects socket, and accumulate all of the transformations samples along the
* way for each IObject. */
void walk_hierarchy(Alembic::AbcGeom::IObject parent,
const Alembic::AbcGeom::ObjectHeader &ohead,
MatrixSamplesData matrix_samples_data,
const unordered_map<string, AlembicObject *> &object_map,
Progress &progress);
/* Read the data for an IPolyMesh at the specified frame_time. Creates corresponding Geometry and
* Object Nodes in the Cycles scene if none exist yet. */
void read_mesh(AlembicObject *abc_object, Alembic::AbcGeom::Abc::chrono_t frame_time);
/* Read the data for an ICurves at the specified frame_time. Creates corresponding Geometry and
* Object Nodes in the Cycles scene if none exist yet. */
void read_curves(AlembicObject *abc_object, Alembic::AbcGeom::Abc::chrono_t frame_time);
/* Read the data for an IPoints at the specified frame_time. Creates corresponding Geometry and
* Object Nodes in the Cycles scene if none exist yet. */
void read_points(AlembicObject *abc_object, Alembic::AbcGeom::Abc::chrono_t frame_time);
/* Read the data for an ISubD at the specified frame_time. Creates corresponding Geometry and
* Object Nodes in the Cycles scene if none exist yet. */
void read_subd(AlembicObject *abc_object, Alembic::AbcGeom::Abc::chrono_t frame_time);
void build_caches(Progress &progress);
size_t get_prefetch_cache_size_in_bytes() const
{
/* prefetch_cache_size is in megabytes, so convert to bytes. */
return static_cast<size_t>(prefetch_cache_size) * 1024 * 1024;
}
};
CCL_NAMESPACE_END
#endif