blender/intern/cycles/scene/geometry.cpp
Thomas Dinges e2a36a6e45 Cycles: Make Embree compact BVH optional
Make the Embree RTC_SCENE_FLAG_COMPACT flag optional and enabled per default.
Disabling it makes CPU rendering a bit faster in some scenes at the cost of a higher memory usage.

Barbershop renders about 3% faster, victor about 4% on CPU with compact BVH disabled.

Differential Revision: https://developer.blender.org/D13592
2022-01-25 17:22:08 +01:00

2223 lines
72 KiB
C++

/*
* Copyright 2011-2020 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh.h"
#include "bvh/bvh2.h"
#include "device/device.h"
#include "scene/attribute.h"
#include "scene/camera.h"
#include "scene/geometry.h"
#include "scene/hair.h"
#include "scene/light.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/pointcloud.h"
#include "scene/scene.h"
#include "scene/shader.h"
#include "scene/shader_nodes.h"
#include "scene/stats.h"
#include "scene/volume.h"
#include "subd/patch_table.h"
#include "subd/split.h"
#include "kernel/osl/globals.h"
#include "util/foreach.h"
#include "util/log.h"
#include "util/progress.h"
#include "util/task.h"
CCL_NAMESPACE_BEGIN
/* Geometry */
NODE_ABSTRACT_DEFINE(Geometry)
{
NodeType *type = NodeType::add("geometry_base", NULL);
SOCKET_UINT(motion_steps, "Motion Steps", 3);
SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
SOCKET_NODE_ARRAY(used_shaders, "Shaders", Shader::get_node_type());
return type;
}
Geometry::Geometry(const NodeType *node_type, const Type type)
: Node(node_type), geometry_type(type), attributes(this, ATTR_PRIM_GEOMETRY)
{
need_update_rebuild = false;
need_update_bvh_for_offset = false;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
bounds = BoundBox::empty;
has_volume = false;
has_surface_bssrdf = false;
bvh = NULL;
attr_map_offset = 0;
prim_offset = 0;
}
Geometry::~Geometry()
{
dereference_all_used_nodes();
delete bvh;
}
void Geometry::clear(bool preserve_shaders)
{
if (!preserve_shaders)
used_shaders.clear();
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
tag_modified();
}
bool Geometry::need_attribute(Scene *scene, AttributeStandard std)
{
if (std == ATTR_STD_NONE)
return false;
if (scene->need_global_attribute(std))
return true;
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
if (shader->attributes.find(std))
return true;
}
return false;
}
bool Geometry::need_attribute(Scene * /*scene*/, ustring name)
{
if (name == ustring())
return false;
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
if (shader->attributes.find(name))
return true;
}
return false;
}
AttributeRequestSet Geometry::needed_attributes()
{
AttributeRequestSet result;
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
result.add(shader->attributes);
}
return result;
}
float Geometry::motion_time(int step) const
{
return (motion_steps > 1) ? 2.0f * step / (motion_steps - 1) - 1.0f : 0.0f;
}
int Geometry::motion_step(float time) const
{
if (motion_steps > 1) {
int attr_step = 0;
for (int step = 0; step < motion_steps; step++) {
float step_time = motion_time(step);
if (step_time == time) {
return attr_step;
}
/* Center step is stored in a separate attribute. */
if (step != motion_steps / 2) {
attr_step++;
}
}
}
return -1;
}
bool Geometry::need_build_bvh(BVHLayout layout) const
{
return is_instanced() || layout == BVH_LAYOUT_OPTIX || layout == BVH_LAYOUT_MULTI_OPTIX ||
layout == BVH_LAYOUT_METAL || layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE ||
layout == BVH_LAYOUT_MULTI_METAL || layout == BVH_LAYOUT_MULTI_METAL_EMBREE;
}
bool Geometry::is_instanced() const
{
/* Currently we treat subsurface objects as instanced.
*
* While it might be not very optimal for ray traversal, it avoids having
* duplicated BVH in the memory, saving quite some space.
*/
return !transform_applied || has_surface_bssrdf;
}
bool Geometry::has_true_displacement() const
{
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
if (shader->has_displacement && shader->get_displacement_method() != DISPLACE_BUMP) {
return true;
}
}
return false;
}
void Geometry::compute_bvh(
Device *device, DeviceScene *dscene, SceneParams *params, Progress *progress, int n, int total)
{
if (progress->get_cancel())
return;
compute_bounds();
const BVHLayout bvh_layout = BVHParams::best_bvh_layout(params->bvh_layout,
device->get_bvh_layout_mask());
if (need_build_bvh(bvh_layout)) {
string msg = "Updating Geometry BVH ";
if (name.empty())
msg += string_printf("%u/%u", (uint)(n + 1), (uint)total);
else
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n + 1), (uint)total);
Object object;
/* Ensure all visibility bits are set at the geometry level BVH. In
* the object level BVH is where actual visibility is tested. */
object.set_is_shadow_catcher(true);
object.set_visibility(~0);
object.set_geometry(this);
vector<Geometry *> geometry;
geometry.push_back(this);
vector<Object *> objects;
objects.push_back(&object);
if (bvh && !need_update_rebuild) {
progress->set_status(msg, "Refitting BVH");
bvh->geometry = geometry;
bvh->objects = objects;
device->build_bvh(bvh, *progress, true);
}
else {
progress->set_status(msg, "Building BVH");
BVHParams bparams;
bparams.use_spatial_split = params->use_bvh_spatial_split;
bparams.use_compact_structure = params->use_bvh_compact_structure;
bparams.bvh_layout = bvh_layout;
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
params->use_bvh_unaligned_nodes;
bparams.num_motion_triangle_steps = params->num_bvh_time_steps;
bparams.num_motion_curve_steps = params->num_bvh_time_steps;
bparams.num_motion_point_steps = params->num_bvh_time_steps;
bparams.bvh_type = params->bvh_type;
bparams.curve_subdivisions = params->curve_subdivisions();
delete bvh;
bvh = BVH::create(bparams, geometry, objects, device);
MEM_GUARDED_CALL(progress, device->build_bvh, bvh, *progress, false);
}
}
need_update_rebuild = false;
need_update_bvh_for_offset = false;
}
bool Geometry::has_motion_blur() const
{
return (use_motion_blur && attributes.find(ATTR_STD_MOTION_VERTEX_POSITION));
}
bool Geometry::has_voxel_attributes() const
{
foreach (const Attribute &attr, attributes.attributes) {
if (attr.element == ATTR_ELEMENT_VOXEL) {
return true;
}
}
return false;
}
void Geometry::tag_update(Scene *scene, bool rebuild)
{
if (rebuild) {
need_update_rebuild = true;
scene->light_manager->tag_update(scene, LightManager::MESH_NEED_REBUILD);
}
else {
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
if (shader->has_surface_emission) {
scene->light_manager->tag_update(scene, LightManager::EMISSIVE_MESH_MODIFIED);
break;
}
}
}
scene->geometry_manager->tag_update(scene, GeometryManager::GEOMETRY_MODIFIED);
}
void Geometry::tag_bvh_update(bool rebuild)
{
tag_modified();
if (rebuild) {
need_update_rebuild = true;
}
}
/* Geometry Manager */
GeometryManager::GeometryManager()
{
update_flags = UPDATE_ALL;
need_flags_update = true;
}
GeometryManager::~GeometryManager()
{
}
void GeometryManager::update_osl_attributes(Device *device,
Scene *scene,
vector<AttributeRequestSet> &geom_attributes)
{
#ifdef WITH_OSL
/* for OSL, a hash map is used to lookup the attribute by name. */
OSLGlobals *og = (OSLGlobals *)device->get_cpu_osl_memory();
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
og->attribute_map.resize(scene->objects.size() * ATTR_PRIM_TYPES);
for (size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
/* set object attributes */
foreach (ParamValue &attr, object->attributes) {
OSLGlobals::Attribute osl_attr;
osl_attr.type = attr.type();
osl_attr.desc.element = ATTR_ELEMENT_OBJECT;
osl_attr.value = attr;
osl_attr.desc.offset = 0;
osl_attr.desc.flags = 0;
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_GEOMETRY][attr.name()] = osl_attr;
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][attr.name()] = osl_attr;
}
/* find geometry attributes */
size_t j = object->geometry->index;
assert(j < scene->geometry.size() && scene->geometry[j] == object->geometry);
AttributeRequestSet &attributes = geom_attributes[j];
/* set mesh attributes */
foreach (AttributeRequest &req, attributes.requests) {
OSLGlobals::Attribute osl_attr;
if (req.desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.desc;
if (req.type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if (req.type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else if (req.type == TypeFloat2)
osl_attr.type = TypeFloat2;
else if (req.type == TypeRGBA)
osl_attr.type = TypeRGBA;
else
osl_attr.type = TypeDesc::TypeColor;
if (req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_GEOMETRY][stdname] = osl_attr;
}
else if (req.name != ustring()) {
/* add lookup by geometry attribute name */
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_GEOMETRY][req.name] = osl_attr;
}
}
if (req.subd_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.subd_desc;
if (req.subd_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if (req.subd_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else if (req.subd_type == TypeFloat2)
osl_attr.type = TypeFloat2;
else if (req.subd_type == TypeRGBA)
osl_attr.type = TypeRGBA;
else
osl_attr.type = TypeDesc::TypeColor;
if (req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][stdname] = osl_attr;
}
else if (req.name != ustring()) {
/* add lookup by geometry attribute name */
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][req.name] = osl_attr;
}
}
}
}
#else
(void)device;
(void)scene;
(void)geom_attributes;
#endif
}
/* Generate a normal attribute map entry from an attribute descriptor. */
static void emit_attribute_map_entry(
uint4 *attr_map, int index, uint id, TypeDesc type, const AttributeDescriptor &desc)
{
attr_map[index].x = id;
attr_map[index].y = desc.element;
attr_map[index].z = as_uint(desc.offset);
if (type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if (type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else if (type == TypeFloat2)
attr_map[index].w = NODE_ATTR_FLOAT2;
else if (type == TypeFloat4)
attr_map[index].w = NODE_ATTR_FLOAT4;
else if (type == TypeRGBA)
attr_map[index].w = NODE_ATTR_RGBA;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= desc.flags << 8;
}
/* Generate an attribute map end marker, optionally including a link to another map.
* Links are used to connect object attribute maps to mesh attribute maps. */
static void emit_attribute_map_terminator(uint4 *attr_map, int index, bool chain, uint chain_link)
{
for (int j = 0; j < ATTR_PRIM_TYPES; j++) {
attr_map[index + j].x = ATTR_STD_NONE;
attr_map[index + j].y = chain; /* link is valid flag */
attr_map[index + j].z = chain ? chain_link + j : 0; /* link to the correct sub-entry */
attr_map[index + j].w = 0;
}
}
/* Generate all necessary attribute map entries from the attribute request. */
static void emit_attribute_mapping(
uint4 *attr_map, int index, Scene *scene, AttributeRequest &req, Geometry *geom)
{
uint id;
if (req.std == ATTR_STD_NONE)
id = scene->shader_manager->get_attribute_id(req.name);
else
id = scene->shader_manager->get_attribute_id(req.std);
emit_attribute_map_entry(attr_map, index, id, req.type, req.desc);
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->get_num_subd_faces()) {
emit_attribute_map_entry(attr_map, index + 1, id, req.subd_type, req.subd_desc);
}
}
}
void GeometryManager::update_svm_attributes(Device *,
DeviceScene *dscene,
Scene *scene,
vector<AttributeRequestSet> &geom_attributes,
vector<AttributeRequestSet> &object_attributes)
{
/* for SVM, the attributes_map table is used to lookup the offset of an
* attribute, based on a unique shader attribute id. */
/* compute array stride */
int attr_map_size = 0;
for (size_t i = 0; i < scene->geometry.size(); i++) {
Geometry *geom = scene->geometry[i];
geom->attr_map_offset = attr_map_size;
attr_map_size += (geom_attributes[i].size() + 1) * ATTR_PRIM_TYPES;
}
for (size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
/* only allocate a table for the object if it actually has attributes */
if (object_attributes[i].size() == 0) {
object->attr_map_offset = 0;
}
else {
object->attr_map_offset = attr_map_size;
attr_map_size += (object_attributes[i].size() + 1) * ATTR_PRIM_TYPES;
}
}
if (attr_map_size == 0)
return;
if (!dscene->attributes_map.need_realloc()) {
return;
}
/* create attribute map */
uint4 *attr_map = dscene->attributes_map.alloc(attr_map_size);
memset(attr_map, 0, dscene->attributes_map.size() * sizeof(uint));
for (size_t i = 0; i < scene->geometry.size(); i++) {
Geometry *geom = scene->geometry[i];
AttributeRequestSet &attributes = geom_attributes[i];
/* set geometry attributes */
int index = geom->attr_map_offset;
foreach (AttributeRequest &req, attributes.requests) {
emit_attribute_mapping(attr_map, index, scene, req, geom);
index += ATTR_PRIM_TYPES;
}
emit_attribute_map_terminator(attr_map, index, false, 0);
}
for (size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
AttributeRequestSet &attributes = object_attributes[i];
/* set object attributes */
if (attributes.size() > 0) {
int index = object->attr_map_offset;
foreach (AttributeRequest &req, attributes.requests) {
emit_attribute_mapping(attr_map, index, scene, req, object->geometry);
index += ATTR_PRIM_TYPES;
}
emit_attribute_map_terminator(attr_map, index, true, object->geometry->attr_map_offset);
}
}
/* copy to device */
dscene->attributes_map.copy_to_device();
}
static void update_attribute_element_size(Geometry *geom,
Attribute *mattr,
AttributePrimitive prim,
size_t *attr_float_size,
size_t *attr_float2_size,
size_t *attr_float3_size,
size_t *attr_float4_size,
size_t *attr_uchar4_size)
{
if (mattr) {
size_t size = mattr->element_size(geom, prim);
if (mattr->element == ATTR_ELEMENT_VOXEL) {
/* pass */
}
else if (mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
*attr_uchar4_size += size;
}
else if (mattr->type == TypeDesc::TypeFloat) {
*attr_float_size += size;
}
else if (mattr->type == TypeFloat2) {
*attr_float2_size += size;
}
else if (mattr->type == TypeDesc::TypeMatrix) {
*attr_float4_size += size * 4;
}
else if (mattr->type == TypeFloat4 || mattr->type == TypeRGBA) {
*attr_float4_size += size;
}
else {
*attr_float3_size += size;
}
}
}
void GeometryManager::update_attribute_element_offset(Geometry *geom,
device_vector<float> &attr_float,
size_t &attr_float_offset,
device_vector<float2> &attr_float2,
size_t &attr_float2_offset,
device_vector<packed_float3> &attr_float3,
size_t &attr_float3_offset,
device_vector<float4> &attr_float4,
size_t &attr_float4_offset,
device_vector<uchar4> &attr_uchar4,
size_t &attr_uchar4_offset,
Attribute *mattr,
AttributePrimitive prim,
TypeDesc &type,
AttributeDescriptor &desc)
{
if (mattr) {
/* store element and type */
desc.element = mattr->element;
desc.flags = mattr->flags;
type = mattr->type;
/* store attribute data in arrays */
size_t size = mattr->element_size(geom, prim);
AttributeElement &element = desc.element;
int &offset = desc.offset;
if (mattr->element == ATTR_ELEMENT_VOXEL) {
/* store slot in offset value */
ImageHandle &handle = mattr->data_voxel();
offset = handle.svm_slot();
}
else if (mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
uchar4 *data = mattr->data_uchar4();
offset = attr_uchar4_offset;
assert(attr_uchar4.size() >= offset + size);
if (mattr->modified) {
for (size_t k = 0; k < size; k++) {
attr_uchar4[offset + k] = data[k];
}
}
attr_uchar4_offset += size;
}
else if (mattr->type == TypeDesc::TypeFloat) {
float *data = mattr->data_float();
offset = attr_float_offset;
assert(attr_float.size() >= offset + size);
if (mattr->modified) {
for (size_t k = 0; k < size; k++) {
attr_float[offset + k] = data[k];
}
}
attr_float_offset += size;
}
else if (mattr->type == TypeFloat2) {
float2 *data = mattr->data_float2();
offset = attr_float2_offset;
assert(attr_float2.size() >= offset + size);
if (mattr->modified) {
for (size_t k = 0; k < size; k++) {
attr_float2[offset + k] = data[k];
}
}
attr_float2_offset += size;
}
else if (mattr->type == TypeDesc::TypeMatrix) {
Transform *tfm = mattr->data_transform();
offset = attr_float4_offset;
assert(attr_float4.size() >= offset + size * 3);
if (mattr->modified) {
for (size_t k = 0; k < size * 3; k++) {
attr_float4[offset + k] = (&tfm->x)[k];
}
}
attr_float4_offset += size * 3;
}
else if (mattr->type == TypeFloat4 || mattr->type == TypeRGBA) {
float4 *data = mattr->data_float4();
offset = attr_float4_offset;
assert(attr_float4.size() >= offset + size);
if (mattr->modified) {
for (size_t k = 0; k < size; k++) {
attr_float4[offset + k] = data[k];
}
}
attr_float4_offset += size;
}
else {
float3 *data = mattr->data_float3();
offset = attr_float3_offset;
assert(attr_float3.size() >= offset + size);
if (mattr->modified) {
for (size_t k = 0; k < size; k++) {
attr_float3[offset + k] = data[k];
}
}
attr_float3_offset += size;
}
/* mesh vertex/curve index is global, not per object, so we sneak
* a correction for that in here */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->subdivision_type == Mesh::SUBDIVISION_CATMULL_CLARK &&
desc.flags & ATTR_SUBDIVIDED) {
/* Indices for subdivided attributes are retrieved
* from patch table so no need for correction here. */
}
else if (element == ATTR_ELEMENT_VERTEX)
offset -= mesh->vert_offset;
else if (element == ATTR_ELEMENT_VERTEX_MOTION)
offset -= mesh->vert_offset;
else if (element == ATTR_ELEMENT_FACE) {
if (prim == ATTR_PRIM_GEOMETRY)
offset -= mesh->prim_offset;
else
offset -= mesh->face_offset;
}
else if (element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) {
if (prim == ATTR_PRIM_GEOMETRY)
offset -= 3 * mesh->prim_offset;
else
offset -= mesh->corner_offset;
}
}
else if (geom->is_hair()) {
Hair *hair = static_cast<Hair *>(geom);
if (element == ATTR_ELEMENT_CURVE)
offset -= hair->prim_offset;
else if (element == ATTR_ELEMENT_CURVE_KEY)
offset -= hair->curve_key_offset;
else if (element == ATTR_ELEMENT_CURVE_KEY_MOTION)
offset -= hair->curve_key_offset;
}
else if (geom->is_pointcloud()) {
if (element == ATTR_ELEMENT_VERTEX)
offset -= geom->prim_offset;
else if (element == ATTR_ELEMENT_VERTEX_MOTION)
offset -= geom->prim_offset;
}
}
else {
/* attribute not found */
desc.element = ATTR_ELEMENT_NONE;
desc.offset = 0;
}
}
void GeometryManager::device_update_attributes(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
progress.set_status("Updating Mesh", "Computing attributes");
/* gather per mesh requested attributes. as meshes may have multiple
* shaders assigned, this merges the requested attributes that have
* been set per shader by the shader manager */
vector<AttributeRequestSet> geom_attributes(scene->geometry.size());
for (size_t i = 0; i < scene->geometry.size(); i++) {
Geometry *geom = scene->geometry[i];
geom->index = i;
scene->need_global_attributes(geom_attributes[i]);
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
geom_attributes[i].add(shader->attributes);
}
if (geom->is_hair() && static_cast<Hair *>(geom)->need_shadow_transparency()) {
geom_attributes[i].add(ATTR_STD_SHADOW_TRANSPARENCY);
}
}
/* convert object attributes to use the same data structures as geometry ones */
vector<AttributeRequestSet> object_attributes(scene->objects.size());
vector<AttributeSet> object_attribute_values;
object_attribute_values.reserve(scene->objects.size());
for (size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
Geometry *geom = object->geometry;
size_t geom_idx = geom->index;
assert(geom_idx < scene->geometry.size() && scene->geometry[geom_idx] == geom);
object_attribute_values.push_back(AttributeSet(geom, ATTR_PRIM_GEOMETRY));
AttributeRequestSet &geom_requests = geom_attributes[geom_idx];
AttributeRequestSet &attributes = object_attributes[i];
AttributeSet &values = object_attribute_values[i];
for (size_t j = 0; j < object->attributes.size(); j++) {
ParamValue &param = object->attributes[j];
/* add attributes that are requested and not already handled by the mesh */
if (geom_requests.find(param.name()) && !geom->attributes.find(param.name())) {
attributes.add(param.name());
Attribute *attr = values.add(param.name(), param.type(), ATTR_ELEMENT_OBJECT);
assert(param.datasize() == attr->buffer.size());
memcpy(attr->buffer.data(), param.data(), param.datasize());
}
}
}
/* mesh attribute are stored in a single array per data type. here we fill
* those arrays, and set the offset and element type to create attribute
* maps next */
/* Pre-allocate attributes to avoid arrays re-allocation which would
* take 2x of overall attribute memory usage.
*/
size_t attr_float_size = 0;
size_t attr_float2_size = 0;
size_t attr_float3_size = 0;
size_t attr_float4_size = 0;
size_t attr_uchar4_size = 0;
for (size_t i = 0; i < scene->geometry.size(); i++) {
Geometry *geom = scene->geometry[i];
AttributeRequestSet &attributes = geom_attributes[i];
foreach (AttributeRequest &req, attributes.requests) {
Attribute *attr = geom->attributes.find(req);
update_attribute_element_size(geom,
attr,
ATTR_PRIM_GEOMETRY,
&attr_float_size,
&attr_float2_size,
&attr_float3_size,
&attr_float4_size,
&attr_uchar4_size);
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
Attribute *subd_attr = mesh->subd_attributes.find(req);
update_attribute_element_size(mesh,
subd_attr,
ATTR_PRIM_SUBD,
&attr_float_size,
&attr_float2_size,
&attr_float3_size,
&attr_float4_size,
&attr_uchar4_size);
}
}
}
for (size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
foreach (Attribute &attr, object_attribute_values[i].attributes) {
update_attribute_element_size(object->geometry,
&attr,
ATTR_PRIM_GEOMETRY,
&attr_float_size,
&attr_float2_size,
&attr_float3_size,
&attr_float4_size,
&attr_uchar4_size);
}
}
dscene->attributes_float.alloc(attr_float_size);
dscene->attributes_float2.alloc(attr_float2_size);
dscene->attributes_float3.alloc(attr_float3_size);
dscene->attributes_float4.alloc(attr_float4_size);
dscene->attributes_uchar4.alloc(attr_uchar4_size);
/* The order of those flags needs to match that of AttrKernelDataType. */
const bool attributes_need_realloc[AttrKernelDataType::NUM] = {
dscene->attributes_float.need_realloc(),
dscene->attributes_float2.need_realloc(),
dscene->attributes_float3.need_realloc(),
dscene->attributes_float4.need_realloc(),
dscene->attributes_uchar4.need_realloc(),
};
size_t attr_float_offset = 0;
size_t attr_float2_offset = 0;
size_t attr_float3_offset = 0;
size_t attr_float4_offset = 0;
size_t attr_uchar4_offset = 0;
/* Fill in attributes. */
for (size_t i = 0; i < scene->geometry.size(); i++) {
Geometry *geom = scene->geometry[i];
AttributeRequestSet &attributes = geom_attributes[i];
/* todo: we now store std and name attributes from requests even if
* they actually refer to the same mesh attributes, optimize */
foreach (AttributeRequest &req, attributes.requests) {
Attribute *attr = geom->attributes.find(req);
if (attr) {
/* force a copy if we need to reallocate all the data */
attr->modified |= attributes_need_realloc[Attribute::kernel_type(*attr)];
}
update_attribute_element_offset(geom,
dscene->attributes_float,
attr_float_offset,
dscene->attributes_float2,
attr_float2_offset,
dscene->attributes_float3,
attr_float3_offset,
dscene->attributes_float4,
attr_float4_offset,
dscene->attributes_uchar4,
attr_uchar4_offset,
attr,
ATTR_PRIM_GEOMETRY,
req.type,
req.desc);
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
Attribute *subd_attr = mesh->subd_attributes.find(req);
if (subd_attr) {
/* force a copy if we need to reallocate all the data */
subd_attr->modified |= attributes_need_realloc[Attribute::kernel_type(*subd_attr)];
}
update_attribute_element_offset(mesh,
dscene->attributes_float,
attr_float_offset,
dscene->attributes_float2,
attr_float2_offset,
dscene->attributes_float3,
attr_float3_offset,
dscene->attributes_float4,
attr_float4_offset,
dscene->attributes_uchar4,
attr_uchar4_offset,
subd_attr,
ATTR_PRIM_SUBD,
req.subd_type,
req.subd_desc);
}
if (progress.get_cancel())
return;
}
}
for (size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
AttributeRequestSet &attributes = object_attributes[i];
AttributeSet &values = object_attribute_values[i];
foreach (AttributeRequest &req, attributes.requests) {
Attribute *attr = values.find(req);
if (attr) {
attr->modified |= attributes_need_realloc[Attribute::kernel_type(*attr)];
}
update_attribute_element_offset(object->geometry,
dscene->attributes_float,
attr_float_offset,
dscene->attributes_float2,
attr_float2_offset,
dscene->attributes_float3,
attr_float3_offset,
dscene->attributes_float4,
attr_float4_offset,
dscene->attributes_uchar4,
attr_uchar4_offset,
attr,
ATTR_PRIM_GEOMETRY,
req.type,
req.desc);
/* object attributes don't care about subdivision */
req.subd_type = req.type;
req.subd_desc = req.desc;
if (progress.get_cancel())
return;
}
}
/* create attribute lookup maps */
if (scene->shader_manager->use_osl())
update_osl_attributes(device, scene, geom_attributes);
update_svm_attributes(device, dscene, scene, geom_attributes, object_attributes);
if (progress.get_cancel())
return;
/* copy to device */
progress.set_status("Updating Mesh", "Copying Attributes to device");
dscene->attributes_float.copy_to_device_if_modified();
dscene->attributes_float2.copy_to_device_if_modified();
dscene->attributes_float3.copy_to_device_if_modified();
dscene->attributes_float4.copy_to_device_if_modified();
dscene->attributes_uchar4.copy_to_device_if_modified();
if (progress.get_cancel())
return;
/* After mesh attributes and patch tables have been copied to device memory,
* we need to update offsets in the objects. */
scene->object_manager->device_update_geom_offsets(device, dscene, scene);
}
void GeometryManager::geom_calc_offset(Scene *scene, BVHLayout bvh_layout)
{
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_size = 0;
size_t curve_key_size = 0;
size_t curve_segment_size = 0;
size_t point_size = 0;
size_t patch_size = 0;
size_t face_size = 0;
size_t corner_size = 0;
foreach (Geometry *geom, scene->geometry) {
bool prim_offset_changed = false;
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
prim_offset_changed = (mesh->prim_offset != tri_size);
mesh->vert_offset = vert_size;
mesh->prim_offset = tri_size;
mesh->patch_offset = patch_size;
mesh->face_offset = face_size;
mesh->corner_offset = corner_size;
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
if (mesh->get_num_subd_faces()) {
Mesh::SubdFace last = mesh->get_subd_face(mesh->get_num_subd_faces() - 1);
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if (mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
face_size += mesh->get_num_subd_faces();
corner_size += mesh->subd_face_corners.size();
}
else if (geom->is_hair()) {
Hair *hair = static_cast<Hair *>(geom);
prim_offset_changed = (hair->curve_segment_offset != curve_segment_size);
hair->curve_key_offset = curve_key_size;
hair->curve_segment_offset = curve_segment_size;
hair->prim_offset = curve_size;
curve_size += hair->num_curves();
curve_key_size += hair->get_curve_keys().size();
curve_segment_size += hair->num_segments();
}
else if (geom->is_pointcloud()) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
prim_offset_changed = (pointcloud->prim_offset != point_size);
pointcloud->prim_offset = point_size;
point_size += pointcloud->num_points();
}
if (prim_offset_changed) {
/* Need to rebuild BVH in OptiX, since refit only allows modified mesh data there */
const bool has_optix_bvh = bvh_layout == BVH_LAYOUT_OPTIX ||
bvh_layout == BVH_LAYOUT_MULTI_OPTIX ||
bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE;
geom->need_update_rebuild |= has_optix_bvh;
geom->need_update_bvh_for_offset = true;
}
}
}
void GeometryManager::device_update_mesh(Device *,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
/* Count. */
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
size_t curve_segment_size = 0;
size_t point_size = 0;
size_t patch_size = 0;
foreach (Geometry *geom, scene->geometry) {
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
if (mesh->get_num_subd_faces()) {
Mesh::SubdFace last = mesh->get_subd_face(mesh->get_num_subd_faces() - 1);
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if (mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
}
else if (geom->is_hair()) {
Hair *hair = static_cast<Hair *>(geom);
curve_key_size += hair->get_curve_keys().size();
curve_size += hair->num_curves();
curve_segment_size += hair->num_segments();
}
else if (geom->is_pointcloud()) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
point_size += pointcloud->num_points();
}
}
/* Fill in all the arrays. */
if (tri_size != 0) {
/* normals */
progress.set_status("Updating Mesh", "Computing normals");
packed_float3 *tri_verts = dscene->tri_verts.alloc(tri_size * 3);
uint *tri_shader = dscene->tri_shader.alloc(tri_size);
packed_float3 *vnormal = dscene->tri_vnormal.alloc(vert_size);
uint4 *tri_vindex = dscene->tri_vindex.alloc(tri_size);
uint *tri_patch = dscene->tri_patch.alloc(tri_size);
float2 *tri_patch_uv = dscene->tri_patch_uv.alloc(vert_size);
const bool copy_all_data = dscene->tri_shader.need_realloc() ||
dscene->tri_vindex.need_realloc() ||
dscene->tri_vnormal.need_realloc() ||
dscene->tri_patch.need_realloc() ||
dscene->tri_patch_uv.need_realloc();
foreach (Geometry *geom, scene->geometry) {
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->shader_is_modified() || mesh->smooth_is_modified() ||
mesh->triangles_is_modified() || copy_all_data) {
mesh->pack_shaders(scene, &tri_shader[mesh->prim_offset]);
}
if (mesh->verts_is_modified() || copy_all_data) {
mesh->pack_normals(&vnormal[mesh->vert_offset]);
}
if (mesh->verts_is_modified() || mesh->triangles_is_modified() ||
mesh->vert_patch_uv_is_modified() || copy_all_data) {
mesh->pack_verts(&tri_verts[mesh->prim_offset * 3],
&tri_vindex[mesh->prim_offset],
&tri_patch[mesh->prim_offset],
&tri_patch_uv[mesh->vert_offset]);
}
if (progress.get_cancel())
return;
}
}
/* vertex coordinates */
progress.set_status("Updating Mesh", "Copying Mesh to device");
dscene->tri_verts.copy_to_device_if_modified();
dscene->tri_shader.copy_to_device_if_modified();
dscene->tri_vnormal.copy_to_device_if_modified();
dscene->tri_vindex.copy_to_device_if_modified();
dscene->tri_patch.copy_to_device_if_modified();
dscene->tri_patch_uv.copy_to_device_if_modified();
}
if (curve_segment_size != 0) {
progress.set_status("Updating Mesh", "Copying Curves to device");
float4 *curve_keys = dscene->curve_keys.alloc(curve_key_size);
KernelCurve *curves = dscene->curves.alloc(curve_size);
KernelCurveSegment *curve_segments = dscene->curve_segments.alloc(curve_segment_size);
const bool copy_all_data = dscene->curve_keys.need_realloc() ||
dscene->curves.need_realloc() ||
dscene->curve_segments.need_realloc();
foreach (Geometry *geom, scene->geometry) {
if (geom->is_hair()) {
Hair *hair = static_cast<Hair *>(geom);
bool curve_keys_co_modified = hair->curve_radius_is_modified() ||
hair->curve_keys_is_modified();
bool curve_data_modified = hair->curve_shader_is_modified() ||
hair->curve_first_key_is_modified();
if (!curve_keys_co_modified && !curve_data_modified && !copy_all_data) {
continue;
}
hair->pack_curves(scene,
&curve_keys[hair->curve_key_offset],
&curves[hair->prim_offset],
&curve_segments[hair->curve_segment_offset]);
if (progress.get_cancel())
return;
}
}
dscene->curve_keys.copy_to_device_if_modified();
dscene->curves.copy_to_device_if_modified();
dscene->curve_segments.copy_to_device_if_modified();
}
if (point_size != 0) {
progress.set_status("Updating Mesh", "Copying Point clouds to device");
float4 *points = dscene->points.alloc(point_size);
uint *points_shader = dscene->points_shader.alloc(point_size);
foreach (Geometry *geom, scene->geometry) {
if (geom->is_pointcloud()) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
pointcloud->pack(
scene, &points[pointcloud->prim_offset], &points_shader[pointcloud->prim_offset]);
if (progress.get_cancel())
return;
}
}
dscene->points.copy_to_device();
dscene->points_shader.copy_to_device();
}
if (patch_size != 0 && dscene->patches.need_realloc()) {
progress.set_status("Updating Mesh", "Copying Patches to device");
uint *patch_data = dscene->patches.alloc(patch_size);
foreach (Geometry *geom, scene->geometry) {
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
mesh->pack_patches(&patch_data[mesh->patch_offset]);
if (mesh->patch_table) {
mesh->patch_table->copy_adjusting_offsets(&patch_data[mesh->patch_table_offset],
mesh->patch_table_offset);
}
if (progress.get_cancel())
return;
}
}
dscene->patches.copy_to_device();
}
}
void GeometryManager::device_update_bvh(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
/* bvh build */
progress.set_status("Updating Scene BVH", "Building");
BVHParams bparams;
bparams.top_level = true;
bparams.bvh_layout = BVHParams::best_bvh_layout(scene->params.bvh_layout,
device->get_bvh_layout_mask());
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
scene->params.use_bvh_unaligned_nodes;
bparams.num_motion_triangle_steps = scene->params.num_bvh_time_steps;
bparams.num_motion_curve_steps = scene->params.num_bvh_time_steps;
bparams.num_motion_point_steps = scene->params.num_bvh_time_steps;
bparams.bvh_type = scene->params.bvh_type;
bparams.curve_subdivisions = scene->params.curve_subdivisions();
VLOG(1) << "Using " << bvh_layout_name(bparams.bvh_layout) << " layout.";
const bool can_refit = scene->bvh != nullptr &&
(bparams.bvh_layout == BVHLayout::BVH_LAYOUT_OPTIX ||
bparams.bvh_layout == BVHLayout::BVH_LAYOUT_METAL);
BVH *bvh = scene->bvh;
if (!scene->bvh) {
bvh = scene->bvh = BVH::create(bparams, scene->geometry, scene->objects, device);
}
device->build_bvh(bvh, progress, can_refit);
if (progress.get_cancel()) {
return;
}
const bool has_bvh2_layout = (bparams.bvh_layout == BVH_LAYOUT_BVH2);
PackedBVH pack;
if (has_bvh2_layout) {
pack = std::move(static_cast<BVH2 *>(bvh)->pack);
}
else {
pack.root_index = -1;
}
/* copy to device */
progress.set_status("Updating Scene BVH", "Copying BVH to device");
/* When using BVH2, we always have to copy/update the data as its layout is dependent on the
* BVH's leaf nodes which may be different when the objects or vertices move. */
if (pack.nodes.size()) {
dscene->bvh_nodes.steal_data(pack.nodes);
dscene->bvh_nodes.copy_to_device();
}
if (pack.leaf_nodes.size()) {
dscene->bvh_leaf_nodes.steal_data(pack.leaf_nodes);
dscene->bvh_leaf_nodes.copy_to_device();
}
if (pack.object_node.size()) {
dscene->object_node.steal_data(pack.object_node);
dscene->object_node.copy_to_device();
}
if (pack.prim_type.size()) {
dscene->prim_type.steal_data(pack.prim_type);
dscene->prim_type.copy_to_device();
}
if (pack.prim_visibility.size()) {
dscene->prim_visibility.steal_data(pack.prim_visibility);
dscene->prim_visibility.copy_to_device();
}
if (pack.prim_index.size()) {
dscene->prim_index.steal_data(pack.prim_index);
dscene->prim_index.copy_to_device();
}
if (pack.prim_object.size()) {
dscene->prim_object.steal_data(pack.prim_object);
dscene->prim_object.copy_to_device();
}
if (pack.prim_time.size()) {
dscene->prim_time.steal_data(pack.prim_time);
dscene->prim_time.copy_to_device();
}
dscene->data.bvh.root = pack.root_index;
dscene->data.bvh.use_bvh_steps = (scene->params.num_bvh_time_steps != 0);
dscene->data.bvh.curve_subdivisions = scene->params.curve_subdivisions();
/* The scene handle is set in 'CPUDevice::const_copy_to' and 'OptiXDevice::const_copy_to' */
dscene->data.bvh.scene = 0;
}
/* Set of flags used to help determining what data has been modified or needs reallocation, so we
* can decide which device data to free or update. */
enum {
DEVICE_CURVE_DATA_MODIFIED = (1 << 0),
DEVICE_MESH_DATA_MODIFIED = (1 << 1),
DEVICE_POINT_DATA_MODIFIED = (1 << 2),
ATTR_FLOAT_MODIFIED = (1 << 3),
ATTR_FLOAT2_MODIFIED = (1 << 4),
ATTR_FLOAT3_MODIFIED = (1 << 5),
ATTR_FLOAT4_MODIFIED = (1 << 6),
ATTR_UCHAR4_MODIFIED = (1 << 7),
CURVE_DATA_NEED_REALLOC = (1 << 8),
MESH_DATA_NEED_REALLOC = (1 << 9),
POINT_DATA_NEED_REALLOC = (1 << 10),
ATTR_FLOAT_NEEDS_REALLOC = (1 << 11),
ATTR_FLOAT2_NEEDS_REALLOC = (1 << 12),
ATTR_FLOAT3_NEEDS_REALLOC = (1 << 13),
ATTR_FLOAT4_NEEDS_REALLOC = (1 << 14),
ATTR_UCHAR4_NEEDS_REALLOC = (1 << 15),
ATTRS_NEED_REALLOC = (ATTR_FLOAT_NEEDS_REALLOC | ATTR_FLOAT2_NEEDS_REALLOC |
ATTR_FLOAT3_NEEDS_REALLOC | ATTR_FLOAT4_NEEDS_REALLOC |
ATTR_UCHAR4_NEEDS_REALLOC),
DEVICE_MESH_DATA_NEEDS_REALLOC = (MESH_DATA_NEED_REALLOC | ATTRS_NEED_REALLOC),
DEVICE_POINT_DATA_NEEDS_REALLOC = (POINT_DATA_NEED_REALLOC | ATTRS_NEED_REALLOC),
DEVICE_CURVE_DATA_NEEDS_REALLOC = (CURVE_DATA_NEED_REALLOC | ATTRS_NEED_REALLOC),
};
static void update_device_flags_attribute(uint32_t &device_update_flags,
const AttributeSet &attributes)
{
foreach (const Attribute &attr, attributes.attributes) {
if (!attr.modified) {
continue;
}
AttrKernelDataType kernel_type = Attribute::kernel_type(attr);
switch (kernel_type) {
case AttrKernelDataType::FLOAT: {
device_update_flags |= ATTR_FLOAT_MODIFIED;
break;
}
case AttrKernelDataType::FLOAT2: {
device_update_flags |= ATTR_FLOAT2_MODIFIED;
break;
}
case AttrKernelDataType::FLOAT3: {
device_update_flags |= ATTR_FLOAT3_MODIFIED;
break;
}
case AttrKernelDataType::FLOAT4: {
device_update_flags |= ATTR_FLOAT4_MODIFIED;
break;
}
case AttrKernelDataType::UCHAR4: {
device_update_flags |= ATTR_UCHAR4_MODIFIED;
break;
}
case AttrKernelDataType::NUM: {
break;
}
}
}
}
static void update_attribute_realloc_flags(uint32_t &device_update_flags,
const AttributeSet &attributes)
{
if (attributes.modified(AttrKernelDataType::FLOAT)) {
device_update_flags |= ATTR_FLOAT_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::FLOAT2)) {
device_update_flags |= ATTR_FLOAT2_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::FLOAT3)) {
device_update_flags |= ATTR_FLOAT3_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::FLOAT4)) {
device_update_flags |= ATTR_FLOAT4_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::UCHAR4)) {
device_update_flags |= ATTR_UCHAR4_NEEDS_REALLOC;
}
}
void GeometryManager::device_update_preprocess(Device *device, Scene *scene, Progress &progress)
{
if (!need_update() && !need_flags_update) {
return;
}
uint32_t device_update_flags = 0;
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update_preprocess", time});
}
});
progress.set_status("Updating Meshes Flags");
/* Update flags. */
bool volume_images_updated = false;
foreach (Geometry *geom, scene->geometry) {
geom->has_volume = false;
update_attribute_realloc_flags(device_update_flags, geom->attributes);
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
update_attribute_realloc_flags(device_update_flags, mesh->subd_attributes);
}
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
if (shader->has_volume) {
geom->has_volume = true;
}
if (shader->has_surface_bssrdf) {
geom->has_surface_bssrdf = true;
}
if (shader->need_update_uvs) {
device_update_flags |= ATTR_FLOAT2_NEEDS_REALLOC;
/* Attributes might need to be tessellated if added. */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_tesselation()) {
mesh->tag_modified();
}
}
}
if (shader->need_update_attribute) {
device_update_flags |= ATTRS_NEED_REALLOC;
/* Attributes might need to be tessellated if added. */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_tesselation()) {
mesh->tag_modified();
}
}
}
if (shader->need_update_displacement) {
/* tag displacement related sockets as modified */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
mesh->tag_verts_modified();
mesh->tag_subd_dicing_rate_modified();
mesh->tag_subd_max_level_modified();
mesh->tag_subd_objecttoworld_modified();
device_update_flags |= ATTRS_NEED_REALLOC;
}
}
}
/* only check for modified attributes if we do not need to reallocate them already */
if ((device_update_flags & ATTRS_NEED_REALLOC) == 0) {
update_device_flags_attribute(device_update_flags, geom->attributes);
/* don't check for subd_attributes, as if they were modified, we would need to reallocate
* anyway */
}
/* Re-create volume mesh if we will rebuild or refit the BVH. Note we
* should only do it in that case, otherwise the BVH and mesh can go
* out of sync. */
if (geom->is_modified() && geom->geometry_type == Geometry::VOLUME) {
/* Create volume meshes if there is voxel data. */
if (!volume_images_updated) {
progress.set_status("Updating Meshes Volume Bounds");
device_update_volume_images(device, scene, progress);
volume_images_updated = true;
}
Volume *volume = static_cast<Volume *>(geom);
create_volume_mesh(volume, progress);
/* always reallocate when we have a volume, as we need to rebuild the BVH */
device_update_flags |= DEVICE_MESH_DATA_NEEDS_REALLOC;
}
if (geom->is_hair()) {
/* Set curve shape, still a global scene setting for now. */
Hair *hair = static_cast<Hair *>(geom);
hair->curve_shape = scene->params.hair_shape;
if (hair->need_update_rebuild) {
device_update_flags |= DEVICE_CURVE_DATA_NEEDS_REALLOC;
}
else if (hair->is_modified()) {
device_update_flags |= DEVICE_CURVE_DATA_MODIFIED;
}
}
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_update_rebuild) {
device_update_flags |= DEVICE_MESH_DATA_NEEDS_REALLOC;
}
else if (mesh->is_modified()) {
device_update_flags |= DEVICE_MESH_DATA_MODIFIED;
}
}
if (geom->is_pointcloud()) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
if (pointcloud->need_update_rebuild) {
device_update_flags |= DEVICE_POINT_DATA_NEEDS_REALLOC;
}
else if (pointcloud->is_modified()) {
device_update_flags |= DEVICE_POINT_DATA_MODIFIED;
}
}
}
if (update_flags & (MESH_ADDED | MESH_REMOVED)) {
device_update_flags |= DEVICE_MESH_DATA_NEEDS_REALLOC;
}
if (update_flags & (HAIR_ADDED | HAIR_REMOVED)) {
device_update_flags |= DEVICE_CURVE_DATA_NEEDS_REALLOC;
}
if (update_flags & (POINT_ADDED | POINT_REMOVED)) {
device_update_flags |= DEVICE_POINT_DATA_NEEDS_REALLOC;
}
/* tag the device arrays for reallocation or modification */
DeviceScene *dscene = &scene->dscene;
if (device_update_flags & (DEVICE_MESH_DATA_NEEDS_REALLOC | DEVICE_CURVE_DATA_NEEDS_REALLOC |
DEVICE_POINT_DATA_NEEDS_REALLOC)) {
delete scene->bvh;
scene->bvh = nullptr;
dscene->bvh_nodes.tag_realloc();
dscene->bvh_leaf_nodes.tag_realloc();
dscene->object_node.tag_realloc();
dscene->prim_type.tag_realloc();
dscene->prim_visibility.tag_realloc();
dscene->prim_index.tag_realloc();
dscene->prim_object.tag_realloc();
dscene->prim_time.tag_realloc();
if (device_update_flags & DEVICE_MESH_DATA_NEEDS_REALLOC) {
dscene->tri_verts.tag_realloc();
dscene->tri_vnormal.tag_realloc();
dscene->tri_vindex.tag_realloc();
dscene->tri_patch.tag_realloc();
dscene->tri_patch_uv.tag_realloc();
dscene->tri_shader.tag_realloc();
dscene->patches.tag_realloc();
}
if (device_update_flags & DEVICE_CURVE_DATA_NEEDS_REALLOC) {
dscene->curves.tag_realloc();
dscene->curve_keys.tag_realloc();
dscene->curve_segments.tag_realloc();
}
if (device_update_flags & DEVICE_POINT_DATA_NEEDS_REALLOC) {
dscene->points.tag_realloc();
dscene->points_shader.tag_realloc();
}
}
if ((update_flags & VISIBILITY_MODIFIED) != 0) {
dscene->prim_visibility.tag_modified();
}
if (device_update_flags & ATTR_FLOAT_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT_MODIFIED) {
dscene->attributes_float.tag_modified();
}
if (device_update_flags & ATTR_FLOAT2_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float2.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT2_MODIFIED) {
dscene->attributes_float2.tag_modified();
}
if (device_update_flags & ATTR_FLOAT3_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float3.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT3_MODIFIED) {
dscene->attributes_float3.tag_modified();
}
if (device_update_flags & ATTR_FLOAT4_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float4.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT4_MODIFIED) {
dscene->attributes_float4.tag_modified();
}
if (device_update_flags & ATTR_UCHAR4_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_uchar4.tag_realloc();
}
else if (device_update_flags & ATTR_UCHAR4_MODIFIED) {
dscene->attributes_uchar4.tag_modified();
}
if (device_update_flags & DEVICE_MESH_DATA_MODIFIED) {
/* if anything else than vertices or shaders are modified, we would need to reallocate, so
* these are the only arrays that can be updated */
dscene->tri_verts.tag_modified();
dscene->tri_vnormal.tag_modified();
dscene->tri_shader.tag_modified();
}
if (device_update_flags & DEVICE_CURVE_DATA_MODIFIED) {
dscene->curve_keys.tag_modified();
dscene->curves.tag_modified();
dscene->curve_segments.tag_modified();
}
if (device_update_flags & DEVICE_POINT_DATA_MODIFIED) {
dscene->points.tag_modified();
dscene->points_shader.tag_modified();
}
need_flags_update = false;
}
void GeometryManager::device_update_displacement_images(Device *device,
Scene *scene,
Progress &progress)
{
progress.set_status("Updating Displacement Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> bump_images;
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified()) {
/* Geometry-level check for hair shadow transparency.
* This matches the logic in the `Hair::update_shadow_transparency()`, avoiding access to
* possible non-loaded images. */
bool need_shadow_transparency = false;
if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
need_shadow_transparency = hair->need_shadow_transparency();
}
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
const bool is_true_displacement = (shader->has_displacement &&
shader->get_displacement_method() != DISPLACE_BUMP);
if (!is_true_displacement && !need_shadow_transparency) {
continue;
}
foreach (ShaderNode *node, shader->graph->nodes) {
if (node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
continue;
}
ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode *>(node);
for (int i = 0; i < image_node->handle.num_tiles(); i++) {
const int slot = image_node->handle.svm_slot(i);
if (slot != -1) {
bump_images.insert(slot);
}
}
}
}
}
}
foreach (int slot, bump_images) {
pool.push(function_bind(
&ImageManager::device_update_slot, image_manager, device, scene, slot, &progress));
}
pool.wait_work();
}
void GeometryManager::device_update_volume_images(Device *device, Scene *scene, Progress &progress)
{
progress.set_status("Updating Volume Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> volume_images;
foreach (Geometry *geom, scene->geometry) {
if (!geom->is_modified()) {
continue;
}
foreach (Attribute &attr, geom->attributes.attributes) {
if (attr.element != ATTR_ELEMENT_VOXEL) {
continue;
}
ImageHandle &handle = attr.data_voxel();
/* We can build directly from OpenVDB data structures, no need to
* load such images early. */
if (!handle.vdb_loader()) {
const int slot = handle.svm_slot();
if (slot != -1) {
volume_images.insert(slot);
}
}
}
}
foreach (int slot, volume_images) {
pool.push(function_bind(
&ImageManager::device_update_slot, image_manager, device, scene, slot, &progress));
}
pool.wait_work();
}
void GeometryManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
if (!need_update())
return;
VLOG(1) << "Total " << scene->geometry.size() << " meshes.";
bool true_displacement_used = false;
bool curve_shadow_transparency_used = false;
size_t total_tess_needed = 0;
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (normals)", time});
}
});
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified()) {
if ((geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME)) {
Mesh *mesh = static_cast<Mesh *>(geom);
/* Update normals. */
mesh->add_face_normals();
mesh->add_vertex_normals();
if (mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
mesh->add_undisplaced();
}
/* Test if we need tessellation. */
if (mesh->need_tesselation()) {
total_tess_needed++;
}
/* Test if we need displacement. */
if (mesh->has_true_displacement()) {
true_displacement_used = true;
}
}
else if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
if (hair->need_shadow_transparency()) {
curve_shadow_transparency_used = true;
}
}
if (progress.get_cancel()) {
return;
}
}
}
}
if (progress.get_cancel()) {
return;
}
/* Tessellate meshes that are using subdivision */
if (total_tess_needed) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (adaptive subdivision)", time});
}
});
Camera *dicing_camera = scene->dicing_camera;
dicing_camera->set_screen_size(dicing_camera->get_full_width(),
dicing_camera->get_full_height());
dicing_camera->update(scene);
size_t i = 0;
foreach (Geometry *geom, scene->geometry) {
if (!(geom->is_modified() && geom->is_mesh())) {
continue;
}
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_tesselation()) {
string msg = "Tessellating ";
if (mesh->name == "")
msg += string_printf("%u/%u", (uint)(i + 1), (uint)total_tess_needed);
else
msg += string_printf(
"%s %u/%u", mesh->name.c_str(), (uint)(i + 1), (uint)total_tess_needed);
progress.set_status("Updating Mesh", msg);
mesh->subd_params->camera = dicing_camera;
DiagSplit dsplit(*mesh->subd_params);
mesh->tessellate(&dsplit);
i++;
if (progress.get_cancel()) {
return;
}
}
}
if (progress.get_cancel()) {
return;
}
}
/* Update images needed for true displacement. */
bool old_need_object_flags_update = false;
if (true_displacement_used || curve_shadow_transparency_used) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (displacement: load images)", time});
}
});
device_update_displacement_images(device, scene, progress);
old_need_object_flags_update = scene->object_manager->need_flags_update;
scene->object_manager->device_update_flags(device, dscene, scene, progress, false);
}
/* Device update. */
device_free(device, dscene, false);
const BVHLayout bvh_layout = BVHParams::best_bvh_layout(scene->params.bvh_layout,
device->get_bvh_layout_mask());
geom_calc_offset(scene, bvh_layout);
if (true_displacement_used || curve_shadow_transparency_used) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (displacement: copy meshes to device)", time});
}
});
device_update_mesh(device, dscene, scene, progress);
}
if (progress.get_cancel()) {
return;
}
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (attributes)", time});
}
});
device_update_attributes(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
/* Update displacement and hair shadow transparency. */
bool displacement_done = false;
bool curve_shadow_transparency_done = false;
size_t num_bvh = 0;
{
/* Copy constant data needed by shader evaluation. */
device->const_copy_to("__data", &dscene->data, sizeof(dscene->data));
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (displacement)", time});
}
});
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified()) {
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (displace(device, scene, mesh, progress)) {
displacement_done = true;
}
}
else if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
if (hair->update_shadow_transparency(device, scene, progress)) {
curve_shadow_transparency_done = true;
}
}
}
if (geom->is_modified() || geom->need_update_bvh_for_offset) {
if (geom->need_build_bvh(bvh_layout)) {
num_bvh++;
}
}
if (progress.get_cancel()) {
return;
}
}
}
if (progress.get_cancel()) {
return;
}
/* Device re-update after displacement. */
if (displacement_done || curve_shadow_transparency_done) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (displacement: attributes)", time});
}
});
device_free(device, dscene, false);
device_update_attributes(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
/* Update the BVH even when there is no geometry so the kernel's BVH data is still valid,
* especially when removing all of the objects during interactive renders.
* Also update the BVH if the transformations change, we cannot rely on tagging the Geometry
* as modified in this case, as we may accumulate displacement if the vertices do not also
* change. */
bool need_update_scene_bvh = (scene->bvh == nullptr ||
(update_flags & (TRANSFORM_MODIFIED | VISIBILITY_MODIFIED)) != 0);
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (build object BVHs)", time});
}
});
TaskPool pool;
size_t i = 0;
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified() || geom->need_update_bvh_for_offset) {
need_update_scene_bvh = true;
pool.push(function_bind(
&Geometry::compute_bvh, geom, device, dscene, &scene->params, &progress, i, num_bvh));
if (geom->need_build_bvh(bvh_layout)) {
i++;
}
}
}
TaskPool::Summary summary;
pool.wait_work(&summary);
VLOG(2) << "Objects BVH build pool statistics:\n" << summary.full_report();
}
foreach (Shader *shader, scene->shaders) {
shader->need_update_uvs = false;
shader->need_update_attribute = false;
shader->need_update_displacement = false;
}
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
/* Update objects. */
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (compute bounds)", time});
}
});
foreach (Object *object, scene->objects) {
object->compute_bounds(motion_blur);
}
}
if (progress.get_cancel()) {
return;
}
if (need_update_scene_bvh) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (build scene BVH)", time});
}
});
device_update_bvh(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
/* Always set BVH layout again after displacement where it was set to none,
* to avoid ray-tracing at that stage. */
dscene->data.bvh.bvh_layout = BVHParams::best_bvh_layout(scene->params.bvh_layout,
device->get_bvh_layout_mask());
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (copy meshes to device)", time});
}
});
device_update_mesh(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
if (true_displacement_used) {
/* Re-tag flags for update, so they're re-evaluated
* for meshes with correct bounding boxes.
*
* This wouldn't cause wrong results, just true
* displacement might be less optimal to calculate.
*/
scene->object_manager->need_flags_update = old_need_object_flags_update;
}
/* unset flags */
foreach (Geometry *geom, scene->geometry) {
geom->clear_modified();
geom->attributes.clear_modified();
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
mesh->subd_attributes.clear_modified();
}
}
update_flags = UPDATE_NONE;
dscene->bvh_nodes.clear_modified();
dscene->bvh_leaf_nodes.clear_modified();
dscene->object_node.clear_modified();
dscene->prim_type.clear_modified();
dscene->prim_visibility.clear_modified();
dscene->prim_index.clear_modified();
dscene->prim_object.clear_modified();
dscene->prim_time.clear_modified();
dscene->tri_verts.clear_modified();
dscene->tri_shader.clear_modified();
dscene->tri_vindex.clear_modified();
dscene->tri_patch.clear_modified();
dscene->tri_vnormal.clear_modified();
dscene->tri_patch_uv.clear_modified();
dscene->curves.clear_modified();
dscene->curve_keys.clear_modified();
dscene->curve_segments.clear_modified();
dscene->points.clear_modified();
dscene->points_shader.clear_modified();
dscene->patches.clear_modified();
dscene->attributes_map.clear_modified();
dscene->attributes_float.clear_modified();
dscene->attributes_float2.clear_modified();
dscene->attributes_float3.clear_modified();
dscene->attributes_float4.clear_modified();
dscene->attributes_uchar4.clear_modified();
}
void GeometryManager::device_free(Device *device, DeviceScene *dscene, bool force_free)
{
dscene->bvh_nodes.free_if_need_realloc(force_free);
dscene->bvh_leaf_nodes.free_if_need_realloc(force_free);
dscene->object_node.free_if_need_realloc(force_free);
dscene->prim_type.free_if_need_realloc(force_free);
dscene->prim_visibility.free_if_need_realloc(force_free);
dscene->prim_index.free_if_need_realloc(force_free);
dscene->prim_object.free_if_need_realloc(force_free);
dscene->prim_time.free_if_need_realloc(force_free);
dscene->tri_verts.free_if_need_realloc(force_free);
dscene->tri_shader.free_if_need_realloc(force_free);
dscene->tri_vnormal.free_if_need_realloc(force_free);
dscene->tri_vindex.free_if_need_realloc(force_free);
dscene->tri_patch.free_if_need_realloc(force_free);
dscene->tri_patch_uv.free_if_need_realloc(force_free);
dscene->curves.free_if_need_realloc(force_free);
dscene->curve_keys.free_if_need_realloc(force_free);
dscene->curve_segments.free_if_need_realloc(force_free);
dscene->points.free_if_need_realloc(force_free);
dscene->points_shader.free_if_need_realloc(force_free);
dscene->patches.free_if_need_realloc(force_free);
dscene->attributes_map.free_if_need_realloc(force_free);
dscene->attributes_float.free_if_need_realloc(force_free);
dscene->attributes_float2.free_if_need_realloc(force_free);
dscene->attributes_float3.free_if_need_realloc(force_free);
dscene->attributes_float4.free_if_need_realloc(force_free);
dscene->attributes_uchar4.free_if_need_realloc(force_free);
/* Signal for shaders like displacement not to do ray tracing. */
dscene->data.bvh.bvh_layout = BVH_LAYOUT_NONE;
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals *)device->get_cpu_osl_memory();
if (og) {
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
}
#else
(void)device;
#endif
}
void GeometryManager::tag_update(Scene *scene, uint32_t flag)
{
update_flags |= flag;
/* do not tag the object manager for an update if it is the one who tagged us */
if ((flag & OBJECT_MANAGER) == 0) {
scene->object_manager->tag_update(scene, ObjectManager::GEOMETRY_MANAGER);
}
}
bool GeometryManager::need_update() const
{
return update_flags != UPDATE_NONE;
}
void GeometryManager::collect_statistics(const Scene *scene, RenderStats *stats)
{
foreach (Geometry *geometry, scene->geometry) {
stats->mesh.geometry.add_entry(
NamedSizeEntry(string(geometry->name.c_str()), geometry->get_total_size_in_bytes()));
}
}
CCL_NAMESPACE_END