forked from bartvdbraak/blender
12307b358d
Kester might want to check this for correctness Kent might want to test if this breaks the Sun compile.
381 lines
12 KiB
C++
Executable File
381 lines
12 KiB
C++
Executable File
/*
|
|
* SOLID - Software Library for Interference Detection
|
|
*
|
|
* Copyright (C) 2001-2003 Dtecta. All rights reserved.
|
|
*
|
|
* This library may be distributed under the terms of the Q Public License
|
|
* (QPL) as defined by Trolltech AS of Norway and appearing in the file
|
|
* LICENSE.QPL included in the packaging of this file.
|
|
*
|
|
* This library may be distributed and/or modified under the terms of the
|
|
* GNU General Public License (GPL) version 2 as published by the Free Software
|
|
* Foundation and appearing in the file LICENSE.GPL included in the
|
|
* packaging of this file.
|
|
*
|
|
* This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* Commercial use or any other use of this library not covered by either
|
|
* the QPL or the GPL requires an additional license from Dtecta.
|
|
* Please contact info@dtecta.com for enquiries about the terms of commercial
|
|
* use of this library.
|
|
*/
|
|
|
|
#ifndef MATRIX3X3_H
|
|
#define MATRIX3X3_H
|
|
|
|
#if defined (__sgi)
|
|
#include <assert.h>
|
|
#else
|
|
#include <cassert>
|
|
#endif
|
|
|
|
#include "Vector3.h"
|
|
#include "Quaternion.h"
|
|
|
|
namespace MT {
|
|
|
|
// Row-major 3x3 matrix
|
|
|
|
template <typename Scalar>
|
|
class Matrix3x3 {
|
|
public:
|
|
Matrix3x3() {}
|
|
|
|
template <typename Scalar2>
|
|
explicit Matrix3x3(const Scalar2 *m) { setValue(m); }
|
|
|
|
explicit Matrix3x3(const Quaternion<Scalar>& q) { setRotation(q); }
|
|
|
|
template <typename Scalar2>
|
|
Matrix3x3(const Scalar2& yaw, const Scalar2& pitch, const Scalar2& roll)
|
|
{
|
|
setEuler(yaw, pitch, roll);
|
|
}
|
|
|
|
template <typename Scalar2>
|
|
Matrix3x3(const Scalar2& xx, const Scalar2& xy, const Scalar2& xz,
|
|
const Scalar2& yx, const Scalar2& yy, const Scalar2& yz,
|
|
const Scalar2& zx, const Scalar2& zy, const Scalar2& zz)
|
|
{
|
|
setValue(xx, xy, xz,
|
|
yx, yy, yz,
|
|
zx, zy, zz);
|
|
}
|
|
|
|
Vector3<Scalar>& operator[](int i)
|
|
{
|
|
assert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
const Vector3<Scalar>& operator[](int i) const
|
|
{
|
|
assert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
Matrix3x3<Scalar>& operator*=(const Matrix3x3<Scalar>& m);
|
|
|
|
template <typename Scalar2>
|
|
void setValue(const Scalar2 *m)
|
|
{
|
|
m_el[0][0] = Scalar(m[0]);
|
|
m_el[1][0] = Scalar(m[1]);
|
|
m_el[2][0] = Scalar(m[2]);
|
|
m_el[0][1] = Scalar(m[4]);
|
|
m_el[1][1] = Scalar(m[5]);
|
|
m_el[2][1] = Scalar(m[6]);
|
|
m_el[0][2] = Scalar(m[8]);
|
|
m_el[1][2] = Scalar(m[9]);
|
|
m_el[2][2] = Scalar(m[10]);
|
|
}
|
|
|
|
template <typename Scalar2>
|
|
void setValue(const Scalar2& xx, const Scalar2& xy, const Scalar2& xz,
|
|
const Scalar2& yx, const Scalar2& yy, const Scalar2& yz,
|
|
const Scalar2& zx, const Scalar2& zy, const Scalar2& zz)
|
|
{
|
|
m_el[0][0] = Scalar(xx);
|
|
m_el[0][1] = Scalar(xy);
|
|
m_el[0][2] = Scalar(xz);
|
|
m_el[1][0] = Scalar(yx);
|
|
m_el[1][1] = Scalar(yy);
|
|
m_el[1][2] = Scalar(yz);
|
|
m_el[2][0] = Scalar(zx);
|
|
m_el[2][1] = Scalar(zy);
|
|
m_el[2][2] = Scalar(zz);
|
|
}
|
|
|
|
void setRotation(const Quaternion<Scalar>& q)
|
|
{
|
|
Scalar d = q.length2();
|
|
assert(d != Scalar(0.0));
|
|
Scalar s = Scalar(2.0) / d;
|
|
Scalar xs = q[0] * s, ys = q[1] * s, zs = q[2] * s;
|
|
Scalar wx = q[3] * xs, wy = q[3] * ys, wz = q[3] * zs;
|
|
Scalar xx = q[0] * xs, xy = q[0] * ys, xz = q[0] * zs;
|
|
Scalar yy = q[1] * ys, yz = q[1] * zs, zz = q[2] * zs;
|
|
setValue(Scalar(1.0) - (yy + zz), xy - wz, xz + wy,
|
|
xy + wz, Scalar(1.0) - (xx + zz), yz - wx,
|
|
xz - wy, yz + wx, Scalar(1.0) - (xx + yy));
|
|
}
|
|
|
|
template <typename Scalar2>
|
|
void setEuler(const Scalar2& yaw, const Scalar2& pitch, const Scalar2& roll)
|
|
{
|
|
Scalar cy(Scalar_traits<Scalar>::cos(yaw));
|
|
Scalar sy(Scalar_traits<Scalar>::sin(yaw));
|
|
Scalar cp(Scalar_traits<Scalar>::cos(pitch));
|
|
Scalar sp(Scalar_traits<Scalar>::sin(pitch));
|
|
Scalar cr(Scalar_traits<Scalar>::cos(roll));
|
|
Scalar sr(Scalar_traits<Scalar>::sin(roll));
|
|
Scalar cc = cy * cr;
|
|
Scalar cs = cy * sr;
|
|
Scalar sc = sy * cr;
|
|
Scalar ss = sy * sr;
|
|
setValue(cy * cp, -sc + sp * cs, ss - sp * cc,
|
|
sy * cp, cc + sp * ss, -cs + sp * sc,
|
|
-sp, cp * sr, cp * cr);
|
|
}
|
|
void setIdentity()
|
|
{
|
|
setValue(Scalar(1.0), Scalar(0.0), Scalar(0.0),
|
|
Scalar(0.0), Scalar(1.0), Scalar(0.0),
|
|
Scalar(0.0), Scalar(0.0), Scalar(1.0));
|
|
}
|
|
|
|
template <typename Scalar2>
|
|
void getValue(Scalar2 *m) const
|
|
{
|
|
m[0] = Scalar2(m_el[0][0]);
|
|
m[1] = Scalar2(m_el[1][0]);
|
|
m[2] = Scalar2(m_el[2][0]);
|
|
m[3] = Scalar2(0.0);
|
|
m[4] = Scalar2(m_el[0][1]);
|
|
m[5] = Scalar2(m_el[1][1]);
|
|
m[6] = Scalar2(m_el[2][1]);
|
|
m[7] = Scalar2(0.0);
|
|
m[8] = Scalar2(m_el[0][2]);
|
|
m[9] = Scalar2(m_el[1][2]);
|
|
m[10] = Scalar2(m_el[2][2]);
|
|
m[11] = Scalar2(0.0);
|
|
}
|
|
|
|
void getRotation(Quaternion<Scalar>& q) const
|
|
{
|
|
Scalar trace = m_el[0][0] + m_el[1][1] + m_el[2][2];
|
|
|
|
if (trace > Scalar(0.0))
|
|
{
|
|
Scalar s = Scalar_traits<Scalar>::sqrt(trace + Scalar(1.0));
|
|
q[3] = s * Scalar(0.5);
|
|
s = Scalar(0.5) / s;
|
|
|
|
q[0] = (m_el[2][1] - m_el[1][2]) * s;
|
|
q[1] = (m_el[0][2] - m_el[2][0]) * s;
|
|
q[2] = (m_el[1][0] - m_el[0][1]) * s;
|
|
}
|
|
else
|
|
{
|
|
int i = m_el[0][0] < m_el[1][1] ?
|
|
(m_el[1][1] < m_el[2][2] ? 2 : 1) :
|
|
(m_el[0][0] < m_el[2][2] ? 2 : 0);
|
|
int j = (i + 1) % 3;
|
|
int k = (i + 2) % 3;
|
|
|
|
Scalar s = Scalar_traits<Scalar>::sqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + Scalar(1.0));
|
|
q[i] = s * Scalar(0.5);
|
|
s = Scalar(0.5) / s;
|
|
|
|
q[3] = (m_el[k][j] - m_el[j][k]) * s;
|
|
q[j] = (m_el[j][i] + m_el[i][j]) * s;
|
|
q[k] = (m_el[k][i] + m_el[i][k]) * s;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar2>
|
|
void getEuler(Scalar2& yaw, Scalar2& pitch, Scalar2& roll) const
|
|
{
|
|
pitch = Scalar2(Scalar_traits<Scalar>::asin(-m_el[2][0]));
|
|
if (pitch < Scalar_traits<Scalar2>::TwoTimesPi())
|
|
{
|
|
if (pitch > Scalar_traits<Scalar2>::TwoTimesPi())
|
|
{
|
|
yaw = Scalar2(Scalar_traits<Scalar>::atan2(m_el[1][0], m_el[0][0]));
|
|
roll = Scalar2(Scalar_traits<Scalar>::atan2(m_el[2][1], m_el[2][2]));
|
|
}
|
|
else
|
|
{
|
|
yaw = Scalar2(-Scalar_traits<Scalar>::atan2(-m_el[0][1], m_el[0][2]));
|
|
roll = Scalar2(0.0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
yaw = Scalar2(Scalar_traits<Scalar>::atan2(-m_el[0][1], m_el[0][2]));
|
|
roll = Scalar2(0.0);
|
|
}
|
|
}
|
|
|
|
Vector3<Scalar> getScaling() const
|
|
{
|
|
return Vector3<Scalar>(m_el[0][0] * m_el[0][0] + m_el[1][0] * m_el[1][0] + m_el[2][0] * m_el[2][0],
|
|
m_el[0][1] * m_el[0][1] + m_el[1][1] * m_el[1][1] + m_el[2][1] * m_el[2][1],
|
|
m_el[0][2] * m_el[0][2] + m_el[1][2] * m_el[1][2] + m_el[2][2] * m_el[2][2]);
|
|
}
|
|
|
|
|
|
Matrix3x3<Scalar> scaled(const Vector3<Scalar>& s) const
|
|
{
|
|
return Matrix3x3<Scalar>(m_el[0][0] * s[0], m_el[0][1] * s[1], m_el[0][2] * s[2],
|
|
m_el[1][0] * s[0], m_el[1][1] * s[1], m_el[1][2] * s[2],
|
|
m_el[2][0] * s[0], m_el[2][1] * s[1], m_el[2][2] * s[2]);
|
|
}
|
|
|
|
Scalar determinant() const;
|
|
Matrix3x3<Scalar> adjoint() const;
|
|
Matrix3x3<Scalar> absolute() const;
|
|
Matrix3x3<Scalar> transpose() const;
|
|
Matrix3x3<Scalar> inverse() const;
|
|
|
|
Matrix3x3<Scalar> transposeTimes(const Matrix3x3<Scalar>& m) const;
|
|
Matrix3x3<Scalar> timesTranspose(const Matrix3x3<Scalar>& m) const;
|
|
|
|
Scalar tdot(int c, const Vector3<Scalar>& v) const
|
|
{
|
|
return m_el[0][c] * v[0] + m_el[1][c] * v[1] + m_el[2][c] * v[2];
|
|
}
|
|
|
|
protected:
|
|
Scalar cofac(int r1, int c1, int r2, int c2) const
|
|
{
|
|
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
|
|
}
|
|
|
|
Vector3<Scalar> m_el[3];
|
|
};
|
|
|
|
template <typename Scalar>
|
|
inline std::ostream&
|
|
operator<<(std::ostream& os, const Matrix3x3<Scalar>& m)
|
|
{
|
|
return os << m[0] << std::endl << m[1] << std::endl << m[2] << std::endl;
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>&
|
|
Matrix3x3<Scalar>::operator*=(const Matrix3x3<Scalar>& m)
|
|
{
|
|
setValue(m.tdot(0, m_el[0]), m.tdot(1, m_el[0]), m.tdot(2, m_el[0]),
|
|
m.tdot(0, m_el[1]), m.tdot(1, m_el[1]), m.tdot(2, m_el[1]),
|
|
m.tdot(0, m_el[2]), m.tdot(1, m_el[2]), m.tdot(2, m_el[2]));
|
|
return *this;
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Scalar
|
|
Matrix3x3<Scalar>::determinant() const
|
|
{
|
|
return triple((*this)[0], (*this)[1], (*this)[2]);
|
|
}
|
|
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
Matrix3x3<Scalar>::absolute() const
|
|
{
|
|
return Matrix3x3<Scalar>(
|
|
Scalar_traits<Scalar>::abs(m_el[0][0]), Scalar_traits<Scalar>::abs(m_el[0][1]), Scalar_traits<Scalar>::abs(m_el[0][2]),
|
|
Scalar_traits<Scalar>::abs(m_el[1][0]), Scalar_traits<Scalar>::abs(m_el[1][1]), Scalar_traits<Scalar>::abs(m_el[1][2]),
|
|
Scalar_traits<Scalar>::abs(m_el[2][0]), Scalar_traits<Scalar>::abs(m_el[2][1]), Scalar_traits<Scalar>::abs(m_el[2][2]));
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
Matrix3x3<Scalar>::transpose() const
|
|
{
|
|
return Matrix3x3<Scalar>(m_el[0][0], m_el[1][0], m_el[2][0],
|
|
m_el[0][1], m_el[1][1], m_el[2][1],
|
|
m_el[0][2], m_el[1][2], m_el[2][2]);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
Matrix3x3<Scalar>::adjoint() const
|
|
{
|
|
return Matrix3x3<Scalar>(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
|
|
cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
|
|
cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
Matrix3x3<Scalar>::inverse() const
|
|
{
|
|
Vector3<Scalar> co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
|
|
Scalar det = (*this)[0].dot(co);
|
|
assert(det != Scalar(0.0));
|
|
Scalar s = Scalar(1.0) / det;
|
|
return Matrix3x3<Scalar>(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
|
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
|
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
Matrix3x3<Scalar>::transposeTimes(const Matrix3x3<Scalar>& m) const
|
|
{
|
|
return Matrix3x3<Scalar>(
|
|
m_el[0][0] * m[0][0] + m_el[1][0] * m[1][0] + m_el[2][0] * m[2][0],
|
|
m_el[0][0] * m[0][1] + m_el[1][0] * m[1][1] + m_el[2][0] * m[2][1],
|
|
m_el[0][0] * m[0][2] + m_el[1][0] * m[1][2] + m_el[2][0] * m[2][2],
|
|
m_el[0][1] * m[0][0] + m_el[1][1] * m[1][0] + m_el[2][1] * m[2][0],
|
|
m_el[0][1] * m[0][1] + m_el[1][1] * m[1][1] + m_el[2][1] * m[2][1],
|
|
m_el[0][1] * m[0][2] + m_el[1][1] * m[1][2] + m_el[2][1] * m[2][2],
|
|
m_el[0][2] * m[0][0] + m_el[1][2] * m[1][0] + m_el[2][2] * m[2][0],
|
|
m_el[0][2] * m[0][1] + m_el[1][2] * m[1][1] + m_el[2][2] * m[2][1],
|
|
m_el[0][2] * m[0][2] + m_el[1][2] * m[1][2] + m_el[2][2] * m[2][2]);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
Matrix3x3<Scalar>::timesTranspose(const Matrix3x3<Scalar>& m) const
|
|
{
|
|
return Matrix3x3<Scalar>(
|
|
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
|
|
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
|
|
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
|
|
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Vector3<Scalar>
|
|
operator*(const Matrix3x3<Scalar>& m, const Vector3<Scalar>& v)
|
|
{
|
|
return Vector3<Scalar>(m[0].dot(v), m[1].dot(v), m[2].dot(v));
|
|
}
|
|
|
|
|
|
template <typename Scalar>
|
|
inline Vector3<Scalar>
|
|
operator*(const Vector3<Scalar>& v, const Matrix3x3<Scalar>& m)
|
|
{
|
|
return Vector3<Scalar>(m.tdot(0, v), m.tdot(1, v), m.tdot(2, v));
|
|
}
|
|
|
|
template <typename Scalar>
|
|
inline Matrix3x3<Scalar>
|
|
operator*(const Matrix3x3<Scalar>& m1, const Matrix3x3<Scalar>& m2)
|
|
{
|
|
return Matrix3x3<Scalar>(
|
|
m2.tdot(0, m1[0]), m2.tdot(1, m1[0]), m2.tdot(2, m1[0]),
|
|
m2.tdot(0, m1[1]), m2.tdot(1, m1[1]), m2.tdot(2, m1[1]),
|
|
m2.tdot(0, m1[2]), m2.tdot(1, m1[2]), m2.tdot(2, m1[2]));
|
|
}
|
|
}
|
|
|
|
#endif
|