blender/intern/cycles/kernel/osl/osl_shader.cpp
Brecht Van Lommel 7503a7edfb Cycles: replace surface/volume sockets in output nodes with a single shader socket,
decided it's better to render objects as either surface or volume.

This may break the volume rendering patch, but shaders with volume closures still
get tagged as having volume closures, so it should be fixable without too many
changes.
2011-10-12 15:42:35 +00:00

478 lines
14 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "kernel_compat_cpu.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "kernel_object.h"
#include "osl_services.h"
#include "osl_shader.h"
#include "util_foreach.h"
#include <OSL/oslexec.h>
#include <oslexec_pvt.h>
CCL_NAMESPACE_BEGIN
tls_ptr(OSLGlobals::ThreadData, OSLGlobals::thread_data);
/* Threads */
void OSLShader::thread_init(KernelGlobals *kg)
{
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = new OSLGlobals::ThreadData();
memset(&tdata->globals, 0, sizeof(OSL::ShaderGlobals));
tdata->thread_info = ssi->create_thread_info();
tls_set(kg->osl.thread_data, tdata);
((OSLRenderServices*)ssi->renderer())->thread_init(kg);
}
void OSLShader::thread_free(KernelGlobals *kg)
{
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
ssi->destroy_thread_info(tdata->thread_info);
delete tdata;
}
/* Globals */
#define TO_VEC3(v) (*(OSL::Vec3*)&(v))
#define TO_COLOR3(v) (*(OSL::Color3*)&(v))
#define TO_FLOAT3(v) make_float3(v[0], v[1], v[2])
static void shaderdata_to_shaderglobals(KernelGlobals *kg, ShaderData *sd,
int path_flag, OSL::ShaderGlobals *globals)
{
/* copy from shader data to shader globals */
globals->P = TO_VEC3(sd->P);
globals->dPdx = TO_VEC3(sd->dP.dx);
globals->dPdy = TO_VEC3(sd->dP.dy);
globals->I = TO_VEC3(sd->I);
globals->dIdx = TO_VEC3(sd->dI.dx);
globals->dIdy = TO_VEC3(sd->dI.dy);
globals->N = TO_VEC3(sd->N);
globals->Ng = TO_VEC3(sd->Ng);
globals->u = sd->u;
globals->dudx = sd->du.dx;
globals->dudy = sd->du.dy;
globals->v = sd->v;
globals->dvdx = sd->dv.dx;
globals->dvdy = sd->dv.dy;
globals->dPdu = TO_VEC3(sd->dPdu);
globals->dPdv = TO_VEC3(sd->dPdv);
globals->surfacearea = (sd->object == ~0)? 1.0f: object_surface_area(kg, sd->object);
/* booleans */
globals->raytype = path_flag; /* todo: add our own ray types */
globals->backfacing = (sd->flag & SD_BACKFACING);
/* don't know yet if we need this */
globals->flipHandedness = false;
/* shader data to be used in services callbacks */
globals->renderstate = sd;
/* hacky, we leave it to services to fetch actual object matrix */
globals->shader2common = sd;
globals->object2common = sd;
/* must be set to NULL before execute */
globals->Ci = NULL;
}
/* Surface */
static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
/* OSL gives use a closure tree, we flatten it into arrays per
* closure type, for evaluation, sampling, etc later on. */
if(closure->type == OSL::ClosureColor::COMPONENT) {
OSL::ClosureComponent *comp = (OSL::ClosureComponent*)closure;
OSL::ClosurePrimitive *prim = (OSL::ClosurePrimitive*)comp->data();
if(prim) {
ShaderClosure sc;
sc.prim = prim;
sc.weight = weight;
switch(prim->category()) {
case ClosurePrimitive::BSDF: {
if(sd->num_closure == MAX_CLOSURE)
return;
OSL::BSDFClosure *bsdf = (OSL::BSDFClosure*)prim;
ustring scattering = bsdf->scattering();
/* no caustics option */
if(no_glossy && scattering == OSL::Labels::GLOSSY)
return;
/* sample weight */
float albedo = bsdf->albedo(TO_VEC3(sd->I));
float sample_weight = fabsf(average(weight))*albedo;
float sample_sum = sd->osl_closure.bsdf_sample_sum + sample_weight;
sc.sample_weight = sample_weight;
sc.type = CLOSURE_BSDF_ID;
sd->osl_closure.bsdf_sample_sum = sample_sum;
/* scattering flags */
if(scattering == OSL::Labels::DIFFUSE)
sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL;
else if(scattering == OSL::Labels::GLOSSY)
sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
else
sd->flag |= SD_BSDF;
/* add */
sd->closure[sd->num_closure++] = sc;
break;
}
case ClosurePrimitive::Emissive: {
if(sd->num_closure == MAX_CLOSURE)
return;
/* sample weight */
float sample_weight = fabsf(average(weight));
float sample_sum = sd->osl_closure.emissive_sample_sum + sample_weight;
sc.sample_weight = sample_weight;
sc.type = CLOSURE_EMISSION_ID;
sd->osl_closure.emissive_sample_sum = sample_sum;
/* flag */
sd->flag |= SD_EMISSION;
sd->closure[sd->num_closure++] = sc;
break;
}
case ClosurePrimitive::Holdout:
if(sd->num_closure == MAX_CLOSURE)
return;
sc.sample_weight = 0.0f;
sc.type = CLOSURE_HOLDOUT_ID;
sd->flag |= SD_HOLDOUT;
sd->closure[sd->num_closure++] = sc;
break;
case ClosurePrimitive::BSSRDF:
case ClosurePrimitive::Debug:
break; /* not implemented */
case ClosurePrimitive::Background:
case ClosurePrimitive::Volume:
break; /* not relevant */
}
}
}
else if(closure->type == OSL::ClosureColor::MUL) {
OSL::ClosureMul *mul = (OSL::ClosureMul*)closure;
flatten_surface_closure_tree(sd, no_glossy, mul->closure, TO_FLOAT3(mul->weight) * weight);
}
else if(closure->type == OSL::ClosureColor::ADD) {
OSL::ClosureAdd *add = (OSL::ClosureAdd*)closure;
flatten_surface_closure_tree(sd, no_glossy, add->closureA, weight);
flatten_surface_closure_tree(sd, no_glossy, add->closureB, weight);
}
}
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag)
{
/* gather pointers */
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::pvt::ShadingContext *ctx = ssi->get_context(tdata->thread_info);
/* setup shader globals from shader data */
sd->osl_ctx = ctx;
shaderdata_to_shaderglobals(kg, sd, path_flag, globals);
/* execute shader for this point */
int shader = sd->shader & SHADER_MASK;
if(kg->osl.state[shader])
ctx->execute(OSL::pvt::ShadUseSurface, *(kg->osl.state[shader]), *globals);
/* flatten closure tree */
sd->num_closure = 0;
sd->randb_closure = randb;
if(globals->Ci) {
bool no_glossy = (path_flag & PATH_RAY_DIFFUSE) && kernel_data.integrator.no_caustics;
flatten_surface_closure_tree(sd, no_glossy, globals->Ci);
}
}
/* Background */
static float3 flatten_background_closure_tree(const OSL::ClosureColor *closure)
{
/* OSL gives use a closure tree, if we are shading for background there
* is only one supported closure type at the moment, which has no evaluation
* functions, so we just sum the weights */
if(closure->type == OSL::ClosureColor::COMPONENT) {
OSL::ClosureComponent *comp = (OSL::ClosureComponent*)closure;
OSL::ClosurePrimitive *prim = (OSL::ClosurePrimitive*)comp->data();
if(prim && prim->category() == OSL::ClosurePrimitive::Background)
return make_float3(1.0f, 1.0f, 1.0f);
}
else if(closure->type == OSL::ClosureColor::MUL) {
OSL::ClosureMul *mul = (OSL::ClosureMul*)closure;
return TO_FLOAT3(mul->weight) * flatten_background_closure_tree(mul->closure);
}
else if(closure->type == OSL::ClosureColor::ADD) {
OSL::ClosureAdd *add = (OSL::ClosureAdd*)closure;
return flatten_background_closure_tree(add->closureA) +
flatten_background_closure_tree(add->closureB);
}
return make_float3(0.0f, 0.0f, 0.0f);
}
float3 OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag)
{
/* gather pointers */
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::pvt::ShadingContext *ctx = ssi->get_context(tdata->thread_info);
/* setup shader globals from shader data */
sd->osl_ctx = ctx;
shaderdata_to_shaderglobals(kg, sd, path_flag, globals);
/* execute shader for this point */
if(kg->osl.background_state)
ctx->execute(OSL::pvt::ShadUseSurface, *kg->osl.background_state, *globals);
/* return background color immediately */
if(globals->Ci)
return flatten_background_closure_tree(globals->Ci);
return make_float3(0.0f, 0.0f, 0.0f);
}
/* Volume */
static void flatten_volume_closure_tree(ShaderData *sd,
const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
/* OSL gives use a closure tree, we flatten it into arrays per
* closure type, for evaluation, sampling, etc later on. */
if(closure->type == OSL::ClosureColor::COMPONENT) {
OSL::ClosureComponent *comp = (OSL::ClosureComponent*)closure;
OSL::ClosurePrimitive *prim = (OSL::ClosurePrimitive*)comp->data();
if(prim) {
ShaderClosure sc;
sc.prim = prim;
sc.weight = weight;
switch(prim->category()) {
case ClosurePrimitive::Volume: {
if(sd->num_closure == MAX_CLOSURE)
return;
/* sample weight */
float sample_weight = fabsf(average(weight));
float sample_sum = sd->osl_closure.volume_sample_sum + sample_weight;
sc.sample_weight = sample_weight;
sc.type = CLOSURE_VOLUME_ID;
sd->osl_closure.volume_sample_sum = sample_sum;
/* add */
sd->closure[sd->num_closure++] = sc;
break;
}
case ClosurePrimitive::Holdout:
case ClosurePrimitive::Debug:
break; /* not implemented */
case ClosurePrimitive::Background:
case ClosurePrimitive::BSDF:
case ClosurePrimitive::Emissive:
case ClosurePrimitive::BSSRDF:
break; /* not relevant */
}
}
}
else if(closure->type == OSL::ClosureColor::MUL) {
OSL::ClosureMul *mul = (OSL::ClosureMul*)closure;
flatten_volume_closure_tree(sd, mul->closure, TO_FLOAT3(mul->weight) * weight);
}
else if(closure->type == OSL::ClosureColor::ADD) {
OSL::ClosureAdd *add = (OSL::ClosureAdd*)closure;
flatten_volume_closure_tree(sd, add->closureA, weight);
flatten_volume_closure_tree(sd, add->closureB, weight);
}
}
void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag)
{
/* gather pointers */
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::pvt::ShadingContext *ctx = ssi->get_context(tdata->thread_info);
/* setup shader globals from shader data */
sd->osl_ctx = ctx;
shaderdata_to_shaderglobals(kg, sd, path_flag, globals);
/* execute shader */
int shader = sd->shader & SHADER_MASK;
if(kg->osl.state[shader])
ctx->execute(OSL::pvt::ShadUseSurface, *(kg->osl.state[shader]), *globals);
/* retrieve resulting closures */
sd->osl_closure.volume_sample_sum = 0.0f;
sd->osl_closure.num_volume = 0;
sd->osl_closure.randb = randb;
if(globals->Ci)
flatten_volume_closure_tree(sd, globals->Ci);
}
/* Displacement */
void OSLShader::eval_displacement(KernelGlobals *kg, ShaderData *sd)
{
/* gather pointers */
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::pvt::ShadingContext *ctx = ssi->get_context(tdata->thread_info);
/* setup shader globals from shader data */
sd->osl_ctx = ctx;
shaderdata_to_shaderglobals(kg, sd, 0, globals);
/* execute shader */
int shader = sd->shader & SHADER_MASK;
if(kg->osl.displacement_state[shader])
ctx->execute(OSL::pvt::ShadUseSurface, *(kg->osl.displacement_state[shader]), *globals);
/* get back position */
sd->P = TO_FLOAT3(globals->P);
}
void OSLShader::release(KernelGlobals *kg, const ShaderData *sd)
{
OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
ssi->release_context((OSL::pvt::ShadingContext*)sd->osl_ctx, tdata->thread_info);
}
/* BSDF Closure */
int OSLShader::bsdf_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3& eval, float3& omega_in, differential3& domega_in, float& pdf)
{
OSL::BSDFClosure *sample_bsdf = (OSL::BSDFClosure*)sc->prim;
int label = LABEL_NONE;
pdf = 0.0f;
/* sample BSDF closure */
ustring ulabel;
ulabel = sample_bsdf->sample(TO_VEC3(sd->Ng),
TO_VEC3(sd->I), TO_VEC3(sd->dI.dx), TO_VEC3(sd->dI.dy),
randu, randv,
TO_VEC3(omega_in), TO_VEC3(domega_in.dx), TO_VEC3(domega_in.dy),
pdf, TO_COLOR3(eval));
/* convert OSL label */
if(ulabel == OSL::Labels::REFLECT)
label = LABEL_REFLECT;
else if(ulabel == OSL::Labels::TRANSMIT)
label = LABEL_TRANSMIT;
else
return LABEL_NONE; /* sampling failed */
/* convert scattering to our bitflag label */
ustring uscattering = sample_bsdf->scattering();
if(uscattering == OSL::Labels::DIFFUSE)
label |= LABEL_DIFFUSE;
else if(uscattering == OSL::Labels::GLOSSY)
label |= LABEL_GLOSSY;
else if(uscattering == OSL::Labels::SINGULAR)
label |= LABEL_SINGULAR;
else
label |= LABEL_TRANSPARENT;
return label;
}
float3 OSLShader::bsdf_eval(const ShaderData *sd, const ShaderClosure *sc, const float3& omega_in, float& pdf)
{
OSL::BSDFClosure *bsdf = (OSL::BSDFClosure*)sc->prim;
OSL::Color3 bsdf_eval;
if(dot(sd->Ng, omega_in) >= 0.0f)
bsdf_eval = bsdf->eval_reflect(TO_VEC3(sd->I), TO_VEC3(omega_in), pdf);
else
bsdf_eval = bsdf->eval_transmit(TO_VEC3(sd->I), TO_VEC3(omega_in), pdf);
return TO_FLOAT3(bsdf_eval);
}
/* Emissive Closure */
float3 OSLShader::emissive_eval(const ShaderData *sd, const ShaderClosure *sc)
{
OSL::EmissiveClosure *emissive = (OSL::EmissiveClosure*)sc->prim;
OSL::Color3 emissive_eval = emissive->eval(TO_VEC3(sd->Ng), TO_VEC3(sd->I));
eval += TO_FLOAT3(emissive_eval);
return eval;
}
/* Volume Closure */
float3 OSLShader::volume_eval_phase(const ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, const float3 omega_out)
{
OSL::VolumeClosure *volume = (OSL::VolumeClosure*)sc->prim;
OSL::Color3 volume_eval = volume->eval_phase(TO_VEC3(omega_in), TO_VEC3(omega_out));
return TO_FLOAT3(volume_eval)*sc->weight;
}
CCL_NAMESPACE_END