blender/intern/cycles/kernel/kernel_random.h

331 lines
9.4 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/kernel_jitter.h"
CCL_NAMESPACE_BEGIN
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
* this single threaded on a CPU for repeatable resutls. */
//#define __DEBUG_CORRELATION__
/* High Dimensional Sobol.
*
* Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
* to classic Van der Corput and Sobol sequences. */
#ifdef __SOBOL__
/* Skip initial numbers that are not as well distributed, especially the
* first sequence is just 0 everywhere, which can be problematic for e.g.
* path termination.
*/
#define SOBOL_SKIP 64
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
{
uint result = 0;
uint i = index;
for(uint j = 0; i; i >>= 1, j++) {
if(i & 1) {
result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
}
}
return result;
}
#endif /* __SOBOL__ */
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension)
{
#ifdef __DEBUG_CORRELATION__
return (float)drand48();
#endif
#ifdef __CMJ__
# ifdef __SOBOL__
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
# endif
{
/* Correlated multi-jitter. */
int p = *rng + dimension;
return cmj_sample_1D(sample, num_samples, p);
}
#endif
#ifdef __SOBOL__
/* Sobol sequence value using direction vectors. */
uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
/* Cranly-Patterson rotation using rng seed */
float shift;
/* Hash rng with dimension to solve correlation issues.
* See T38710, T50116.
*/
RNG tmp_rng = cmj_hash_simple(dimension, *rng);
shift = tmp_rng * (1.0f/(float)0xFFFFFFFF);
return r + shift - floorf(r + shift);
#endif
}
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension,
float *fx, float *fy)
{
#ifdef __DEBUG_CORRELATION__
*fx = (float)drand48();
*fy = (float)drand48();
return;
#endif
#ifdef __CMJ__
# ifdef __SOBOL__
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
# endif
{
/* Correlated multi-jitter. */
int p = *rng + dimension;
cmj_sample_2D(sample, num_samples, p, fx, fy);
return;
}
#endif
#ifdef __SOBOL__
/* Sobol. */
*fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
#endif
}
ccl_device_inline void path_rng_init(KernelGlobals *kg,
ccl_global uint *rng_state,
int sample, int num_samples,
RNG *rng,
int x, int y,
float *fx, float *fy)
{
/* load state */
*rng = *rng_state;
*rng ^= kernel_data.integrator.seed;
#ifdef __DEBUG_CORRELATION__
srand48(*rng + sample);
#endif
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U, fx, fy);
}
}
/* Linear Congruential Generator */
ccl_device uint lcg_step_uint(uint *rng)
{
/* implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return *rng;
}
ccl_device float lcg_step_float(uint *rng)
{
/* implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}
ccl_device uint lcg_init(uint seed)
{
uint rng = seed;
lcg_step_uint(&rng);
return rng;
}
/* Path Tracing Utility Functions
*
* For each random number in each step of the path we must have a unique
* dimension to avoid using the same sequence twice.
*
* For branches in the path we must be careful not to reuse the same number
* in a sequence and offset accordingly.
*/
ccl_device_inline float path_state_rng_1D(KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int dimension)
{
return path_rng_1D(kg,
rng,
state->sample, state->num_samples,
state->rng_offset + dimension);
}
ccl_device_inline float path_state_rng_1D_for_decision(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int dimension)
{
/* The rng_offset is not increased for transparent bounces. if we do then
* fully transparent objects can become subtly visible by the different
* sampling patterns used where the transparent object is.
*
* however for some random numbers that will determine if we next bounce
* is transparent we do need to increase the offset to avoid always making
* the same decision. */
const int rng_offset = state->rng_offset + state->transparent_bounce * PRNG_BOUNCE_NUM;
return path_rng_1D(kg,
rng,
state->sample, state->num_samples,
rng_offset + dimension);
}
ccl_device_inline void path_state_rng_2D(KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int dimension,
float *fx, float *fy)
{
path_rng_2D(kg,
rng,
state->sample, state->num_samples,
state->rng_offset + dimension,
fx, fy);
}
ccl_device_inline float path_branched_rng_1D(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension)
{
return path_rng_1D(kg,
rng,
state->sample * num_branches + branch,
state->num_samples * num_branches,
state->rng_offset + dimension);
}
ccl_device_inline float path_branched_rng_1D_for_decision(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension)
{
const int rng_offset = state->rng_offset + state->transparent_bounce * PRNG_BOUNCE_NUM;
return path_rng_1D(kg,
rng,
state->sample * num_branches + branch,
state->num_samples * num_branches,
rng_offset + dimension);
}
ccl_device_inline void path_branched_rng_2D(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension,
float *fx, float *fy)
{
path_rng_2D(kg,
rng,
state->sample * num_branches + branch,
state->num_samples * num_branches,
state->rng_offset + dimension,
fx, fy);
}
/* Utitility functions to get light termination value,
* since it might not be needed in many cases.
*/
ccl_device_inline float path_state_rng_light_termination(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state)
{
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_state_rng_1D_for_decision(kg, rng, state, PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
ccl_device_inline float path_branched_rng_light_termination(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches)
{
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_branched_rng_1D_for_decision(kg,
rng,
state,
branch,
num_branches,
PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
ccl_device_inline void path_state_branch(ccl_addr_space PathState *state,
int branch,
int num_branches)
{
/* path is splitting into a branch, adjust so that each branch
* still gets a unique sample from the same sequence */
state->rng_offset += PRNG_BOUNCE_NUM;
state->sample = state->sample*num_branches + branch;
state->num_samples = state->num_samples*num_branches;
}
ccl_device_inline uint lcg_state_init(RNG *rng,
int rng_offset,
int sample,
uint scramble)
{
return lcg_init(*rng + rng_offset + sample*scramble);
}
ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
{
/* Implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}
CCL_NAMESPACE_END