blender/intern/cycles/render/colorspace.cpp
Brecht Van Lommel 7ad802cf3a Cycles/Eevee: unified and improved texture image color space handling
Cycles now uses the color space on the image datablock, and uses OpenColorIO
to convert to scene linear as needed. Byte images do not take extra memory,
they are compressed in scene linear + sRGB transfer function which in common
cases is a no-op.

Eevee and workbench were changed to work similar. Float images are stored as
scene linear. Byte images are compressed as scene linear + sRGB and stored in
a GL_SRGB8_ALPHA8 texture. From the GLSL shader side this means they are read
as scene linear, simplifying the code and taking advantage of hardware support.

Further, OpenGL image textures are now all stored with premultiplied alpha.
Eevee texture sampling looks a little different now because interpolation
happens premultiplied and in scene linear space.

Overlays and grease pencil work in sRGB space so those now have an extra
conversion to sRGB after reading from image textures. This is not particularly
elegant but as long as engines use different conventions, one or the other
needs to do conversion.

This change breaks compatibility for cases where multiple image texture nodes
were using the same image with different color space node settings. However it
gives more predictable behavior for baking and texture painting if save, load
and image editing operations have a single color space to handle.

Differential Revision: https://developer.blender.org/D4807
2019-05-13 15:56:10 +02:00

386 lines
12 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/colorspace.h"
#include "util/util_color.h"
#include "util/util_image.h"
#include "util/util_half.h"
#include "util/util_logging.h"
#include "util/util_math.h"
#include "util/util_thread.h"
#include "util/util_vector.h"
#ifdef WITH_OCIO
# include <OpenColorIO/OpenColorIO.h>
namespace OCIO = OCIO_NAMESPACE;
#endif
CCL_NAMESPACE_BEGIN
/* Builtin colorspaces. */
ustring u_colorspace_auto;
ustring u_colorspace_raw("__builtin_raw");
ustring u_colorspace_srgb("__builtin_srgb");
/* Cached data. */
#ifdef WITH_OCIO
static thread_mutex cache_colorspaces_mutex;
static thread_mutex cache_processors_mutex;
static unordered_map<ustring, ustring, ustringHash> cached_colorspaces;
static unordered_map<ustring, OCIO::ConstProcessorRcPtr, ustringHash> cached_processors;
#endif
ColorSpaceProcessor *ColorSpaceManager::get_processor(ustring colorspace)
{
#ifdef WITH_OCIO
/* Only use this for OpenColorIO color spaces, not the builtin ones. */
assert(colorspace != u_colorspace_srgb && colorspace != u_colorspace_auto);
if (colorspace == u_colorspace_raw) {
return NULL;
}
OCIO::ConstConfigRcPtr config = OCIO::GetCurrentConfig();
if (!config) {
return NULL;
}
/* Cache processor until free_memory(), memory overhead is expected to be
* small and the processor is likely to be reused. */
thread_scoped_lock cache_processors_lock(cache_processors_mutex);
if (cached_processors.find(colorspace) == cached_processors.end()) {
try {
cached_processors[colorspace] = config->getProcessor(colorspace.c_str(), "scene_linear");
}
catch (OCIO::Exception &exception) {
cached_processors[colorspace] = OCIO::ConstProcessorRcPtr();
VLOG(1) << "Colorspace " << colorspace.c_str()
<< " can't be converted to scene_linear: " << exception.what();
}
}
const OCIO::Processor *processor = cached_processors[colorspace].get();
return (ColorSpaceProcessor *)processor;
#else
/* No OpenColorIO. */
(void)colorspace;
return NULL;
#endif
}
ustring ColorSpaceManager::detect_known_colorspace(ustring colorspace,
const char *file_format,
bool is_float)
{
if (colorspace == u_colorspace_auto) {
/* Auto detect sRGB or raw if none specified. */
if (is_float) {
bool srgb = (colorspace == "sRGB" || colorspace == "GammaCorrected" ||
(colorspace.empty() &&
(strcmp(file_format, "png") == 0 || strcmp(file_format, "tiff") == 0 ||
strcmp(file_format, "dpx") == 0 || strcmp(file_format, "jpeg2000") == 0)));
return srgb ? u_colorspace_srgb : u_colorspace_raw;
}
else {
return u_colorspace_srgb;
}
}
else if (colorspace == u_colorspace_srgb || colorspace == u_colorspace_raw) {
/* Builtin colorspaces. */
return colorspace;
}
else {
/* Use OpenColorIO. */
#ifdef WITH_OCIO
{
thread_scoped_lock cache_lock(cache_colorspaces_mutex);
/* Cached lookup. */
if (cached_colorspaces.find(colorspace) != cached_colorspaces.end()) {
return cached_colorspaces[colorspace];
}
}
/* Detect if it matches a simple builtin colorspace. */
bool is_scene_linear, is_srgb;
is_builtin_colorspace(colorspace, is_scene_linear, is_srgb);
thread_scoped_lock cache_lock(cache_colorspaces_mutex);
if (is_scene_linear) {
VLOG(1) << "Colorspace " << colorspace.string() << " is no-op";
cached_colorspaces[colorspace] = u_colorspace_raw;
return u_colorspace_raw;
}
else if (is_srgb) {
VLOG(1) << "Colorspace " << colorspace.string() << " is sRGB";
cached_colorspaces[colorspace] = u_colorspace_srgb;
return u_colorspace_srgb;
}
/* Verify if we can convert from the requested color space. */
if (!get_processor(colorspace)) {
OCIO::ConstConfigRcPtr config = OCIO::GetCurrentConfig();
if (!config || !config->getColorSpace(colorspace.c_str())) {
VLOG(1) << "Colorspace " << colorspace.c_str() << " not found, using raw instead";
}
else {
VLOG(1) << "Colorspace " << colorspace.c_str()
<< " can't be converted to scene_linear, using raw instead";
}
cached_colorspaces[colorspace] = u_colorspace_raw;
return u_colorspace_raw;
}
/* Convert to/from colorspace with OpenColorIO. */
VLOG(1) << "Colorspace " << colorspace.string() << " handled through OpenColorIO";
cached_colorspaces[colorspace] = colorspace;
return colorspace;
#else
VLOG(1) << "Colorspace " << colorspace.c_str() << " not available, built without OpenColorIO";
return u_colorspace_raw;
#endif
}
}
void ColorSpaceManager::is_builtin_colorspace(ustring colorspace,
bool &is_scene_linear,
bool &is_srgb)
{
#ifdef WITH_OCIO
const OCIO::Processor *processor = (const OCIO::Processor *)get_processor(colorspace);
if (!processor) {
is_scene_linear = false;
is_srgb = false;
return;
}
is_scene_linear = true;
is_srgb = true;
for (int i = 0; i < 256; i++) {
float v = i / 255.0f;
float cR[3] = {v, 0, 0};
float cG[3] = {0, v, 0};
float cB[3] = {0, 0, v};
float cW[3] = {v, v, v};
processor->applyRGB(cR);
processor->applyRGB(cG);
processor->applyRGB(cB);
processor->applyRGB(cW);
/* Make sure that there is no channel crosstalk. */
if (fabsf(cR[1]) > 1e-5f || fabsf(cR[2]) > 1e-5f || fabsf(cG[0]) > 1e-5f ||
fabsf(cG[2]) > 1e-5f || fabsf(cB[0]) > 1e-5f || fabsf(cB[1]) > 1e-5f) {
is_scene_linear = false;
is_srgb = false;
break;
}
/* Make sure that the three primaries combine linearly. */
if (!compare_floats(cR[0], cW[0], 1e-6f, 64) || !compare_floats(cG[1], cW[1], 1e-6f, 64) ||
!compare_floats(cB[2], cW[2], 1e-6f, 64)) {
is_scene_linear = false;
is_srgb = false;
break;
}
/* Make sure that the three channels behave identically. */
if (!compare_floats(cW[0], cW[1], 1e-6f, 64) || !compare_floats(cW[1], cW[2], 1e-6f, 64)) {
is_scene_linear = false;
is_srgb = false;
break;
}
float out_v = average(make_float3(cW[0], cW[1], cW[2]));
if (!compare_floats(v, out_v, 1e-6f, 64)) {
is_scene_linear = false;
}
if (!compare_floats(color_srgb_to_linear(v), out_v, 1e-6f, 64)) {
is_srgb = false;
}
}
#else
(void)colorspace;
is_scene_linear = false;
is_srgb = false;
#endif
}
#ifdef WITH_OCIO
template<typename T> inline float4 cast_to_float4(T *data)
{
return make_float4(util_image_cast_to_float(data[0]),
util_image_cast_to_float(data[1]),
util_image_cast_to_float(data[2]),
util_image_cast_to_float(data[3]));
}
template<typename T> inline void cast_from_float4(T *data, float4 value)
{
data[0] = util_image_cast_from_float<T>(value.x);
data[1] = util_image_cast_from_float<T>(value.y);
data[2] = util_image_cast_from_float<T>(value.z);
data[3] = util_image_cast_from_float<T>(value.w);
}
/* Slower versions for other all data types, which needs to convert to float and back. */
template<typename T, bool compress_as_srgb = false>
inline void processor_apply_pixels(const OCIO::Processor *processor,
T *pixels,
size_t width,
size_t height)
{
/* TODO: implement faster version for when we know the conversion
* is a simple matrix transform between linear spaces. In that case
* unpremultiply is not needed. */
/* Process large images in chunks to keep temporary memory requirement down. */
size_t y_chunk_size = max(1, 16 * 1024 * 1024 / (sizeof(float4) * width));
vector<float4> float_pixels(y_chunk_size * width);
for (size_t y0 = 0; y0 < height; y0 += y_chunk_size) {
size_t y1 = std::min(y0 + y_chunk_size, height);
size_t i = 0;
for (size_t y = y0; y < y1; y++) {
for (size_t x = 0; x < width; x++, i++) {
float4 value = cast_to_float4(pixels + 4 * (y * width + x));
if (!(value.w == 0.0f || value.w == 1.0f)) {
float inv_alpha = 1.0f / value.w;
value.x *= inv_alpha;
value.y *= inv_alpha;
value.z *= inv_alpha;
}
float_pixels[i] = value;
}
}
OCIO::PackedImageDesc desc((float *)float_pixels.data(), width, y_chunk_size, 4);
processor->apply(desc);
i = 0;
for (size_t y = y0; y < y1; y++) {
for (size_t x = 0; x < width; x++, i++) {
float4 value = float_pixels[i];
value.x *= value.w;
value.y *= value.w;
value.z *= value.w;
if (compress_as_srgb) {
value = color_linear_to_srgb_v4(value);
}
cast_from_float4(pixels + 4 * (y * width + x), value);
}
}
}
}
#endif
template<typename T>
void ColorSpaceManager::to_scene_linear(ustring colorspace,
T *pixels,
size_t width,
size_t height,
size_t depth,
bool compress_as_srgb)
{
#ifdef WITH_OCIO
const OCIO::Processor *processor = (const OCIO::Processor *)get_processor(colorspace);
if (processor) {
if (compress_as_srgb) {
/* Compress output as sRGB. */
for (size_t z = 0; z < depth; z++) {
processor_apply_pixels<T, true>(processor, &pixels[z * width * height], width, height);
}
}
else {
/* Write output as scene linear directly. */
for (size_t z = 0; z < depth; z++) {
processor_apply_pixels<T>(processor, &pixels[z * width * height], width, height);
}
}
}
#else
(void)colorspace;
(void)pixels;
(void)width;
(void)height;
(void)depth;
(void)compress_as_srgb;
#endif
}
void ColorSpaceManager::to_scene_linear(ColorSpaceProcessor *processor_,
float *pixel,
int channels)
{
#ifdef WITH_OCIO
const OCIO::Processor *processor = (const OCIO::Processor *)processor_;
if (processor) {
if (channels == 3) {
processor->applyRGB(pixel);
}
else if (channels == 4) {
if (pixel[3] == 1.0f || pixel[3] == 0.0f) {
/* Fast path for RGBA. */
processor->applyRGB(pixel);
}
else {
/* Unassociate and associate alpha since color management should not
* be affected by transparency. */
float alpha = pixel[3];
float inv_alpha = 1.0f / alpha;
pixel[0] *= inv_alpha;
pixel[1] *= inv_alpha;
pixel[2] *= inv_alpha;
processor->applyRGB(pixel);
pixel[0] *= alpha;
pixel[1] *= alpha;
pixel[2] *= alpha;
}
}
}
#else
(void)processor_;
(void)pixel;
(void)channels;
#endif
}
void ColorSpaceManager::free_memory()
{
#ifdef WITH_OCIO
map_free_memory(cached_colorspaces);
map_free_memory(cached_colorspaces);
#endif
}
/* Template instanstations so we don't have to inline functions. */
template void ColorSpaceManager::to_scene_linear(ustring, uchar *, size_t, size_t, size_t, bool);
template void ColorSpaceManager::to_scene_linear(ustring, ushort *, size_t, size_t, size_t, bool);
template void ColorSpaceManager::to_scene_linear(ustring, half *, size_t, size_t, size_t, bool);
template void ColorSpaceManager::to_scene_linear(ustring, float *, size_t, size_t, size_t, bool);
CCL_NAMESPACE_END