blender/intern/cycles/bvh/bvh_node.cpp
Sergey Sharybin b03e66e75f Cycles: Implement unaligned nodes BVH builder
This is a special builder type which is allowed to orient nodes to
strands direction, hence minimizing their surface area in comparison
with axis-aligned nodes. Such nodes are much more efficient for hair
rendering.

Implementation of BVH builder is based on Embree, and generally idea
there is to calculate axis-aligned SAH and oriented SAH and if SAH
of oriented node is smaller than axis-aligned SAH we create unaligned
node.

We store both aligned and unaligned nodes in the same tree (which
seems to be different from what Embree is doing) so we don't have
any any extra calculations needed to set up hair ray for BVH
traversal, hence avoiding any possible negative effect of this new
BVH nodes type.

This new builder is currently not in use, still need to make BVH
traversal code aware of unaligned nodes.
2016-07-07 17:25:48 +02:00

204 lines
4.7 KiB
C++

/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh.h"
#include "bvh_build.h"
#include "bvh_node.h"
#include "util_debug.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
/* BVH Node */
int BVHNode::getSubtreeSize(BVH_STAT stat) const
{
int cnt = 0;
switch(stat)
{
case BVH_STAT_NODE_COUNT:
cnt = 1;
break;
case BVH_STAT_LEAF_COUNT:
cnt = is_leaf() ? 1 : 0;
break;
case BVH_STAT_INNER_COUNT:
cnt = is_leaf() ? 0 : 1;
break;
case BVH_STAT_TRIANGLE_COUNT:
cnt = is_leaf() ? reinterpret_cast<const LeafNode*>(this)->num_triangles() : 0;
break;
case BVH_STAT_CHILDNODE_COUNT:
cnt = num_children();
break;
case BVH_STAT_QNODE_COUNT:
cnt = 1;
for(int i = 0; i < num_children(); i++) {
BVHNode *node = get_child(i);
if(node->is_leaf()) {
cnt += 1;
}
else {
for(int j = 0; j < node->num_children(); j++) {
cnt += node->get_child(j)->getSubtreeSize(stat);
}
}
}
return cnt;
case BVH_STAT_ALIGNED_COUNT:
if(!is_unaligned()) {
cnt = 1;
}
break;
case BVH_STAT_UNALIGNED_COUNT:
if(is_unaligned()) {
cnt = 1;
}
break;
case BVH_STAT_ALIGNED_INNER_COUNT:
if(!is_leaf()) {
bool has_unaligned = false;
for(int j = 0; j < num_children(); j++) {
has_unaligned |= get_child(j)->is_unaligned();
}
cnt += has_unaligned? 0: 1;
}
break;
case BVH_STAT_UNALIGNED_INNER_COUNT:
if(!is_leaf()) {
bool has_unaligned = false;
for(int j = 0; j < num_children(); j++) {
has_unaligned |= get_child(j)->is_unaligned();
}
cnt += has_unaligned? 1: 0;
}
break;
case BVH_STAT_ALIGNED_INNER_QNODE_COUNT:
{
bool has_unaligned = false;
for(int i = 0; i < num_children(); i++) {
BVHNode *node = get_child(i);
if(node->is_leaf()) {
has_unaligned |= node->is_unaligned();
}
else {
for(int j = 0; j < node->num_children(); j++) {
cnt += node->get_child(j)->getSubtreeSize(stat);
has_unaligned |= node->get_child(j)->is_unaligned();
}
}
}
cnt += has_unaligned? 0: 1;
}
return cnt;
case BVH_STAT_UNALIGNED_INNER_QNODE_COUNT:
{
bool has_unaligned = false;
for(int i = 0; i < num_children(); i++) {
BVHNode *node = get_child(i);
if(node->is_leaf()) {
has_unaligned |= node->is_unaligned();
}
else {
for(int j = 0; j < node->num_children(); j++) {
cnt += node->get_child(j)->getSubtreeSize(stat);
has_unaligned |= node->get_child(j)->is_unaligned();
}
}
}
cnt += has_unaligned? 1: 0;
}
return cnt;
case BVH_STAT_ALIGNED_LEAF_COUNT:
cnt = (is_leaf() && !is_unaligned()) ? 1 : 0;
break;
case BVH_STAT_UNALIGNED_LEAF_COUNT:
cnt = (is_leaf() && is_unaligned()) ? 1 : 0;
break;
default:
assert(0); /* unknown mode */
}
if(!is_leaf())
for(int i = 0; i < num_children(); i++)
cnt += get_child(i)->getSubtreeSize(stat);
return cnt;
}
void BVHNode::deleteSubtree()
{
for(int i = 0; i < num_children(); i++)
if(get_child(i))
get_child(i)->deleteSubtree();
delete this;
}
float BVHNode::computeSubtreeSAHCost(const BVHParams& p, float probability) const
{
float SAH = probability * p.cost(num_children(), num_triangles());
for(int i = 0; i < num_children(); i++) {
BVHNode *child = get_child(i);
SAH += child->computeSubtreeSAHCost(p, probability * child->m_bounds.safe_area()/m_bounds.safe_area());
}
return SAH;
}
uint BVHNode::update_visibility()
{
if(!is_leaf() && m_visibility == 0) {
InnerNode *inner = (InnerNode*)this;
BVHNode *child0 = inner->children[0];
BVHNode *child1 = inner->children[1];
m_visibility = child0->update_visibility()|child1->update_visibility();
}
return m_visibility;
}
/* Inner Node */
void InnerNode::print(int depth) const
{
for(int i = 0; i < depth; i++)
printf(" ");
printf("inner node %p\n", (void*)this);
if(children[0])
children[0]->print(depth+1);
if(children[1])
children[1]->print(depth+1);
}
void LeafNode::print(int depth) const
{
for(int i = 0; i < depth; i++)
printf(" ");
printf("leaf node %d to %d\n", m_lo, m_hi);
}
CCL_NAMESPACE_END