blender/intern/cycles/kernel/kernel_bake.h
Thomas Dinges 83e73a2100 Cycles: Refactor how we pass bounce info to light path node.
This commit changes the way how we pass bounce information to the Light
Path node. Instead of manualy copying the bounces into ShaderData, we now
directly pass PathState. This reduces the arguments that we need to pass
around and also makes it easier to extend the feature.

This commit also exposes the Transmission Bounce Depth to the Light Path
node. It works similar to the Transparent Depth Output: Replace a
Transmission lightpath after X bounces with another shader, e.g a Diffuse
one. This can be used to avoid black surfaces, due to low amount of max
bounces.

Reviewed by Sergey and Brecht, thanks for some hlp with this.

I tested compilation and usage on CPU (SVM and OSL), CUDA, OpenCL Split
and Mega kernel. Hopefully this covers all devices. :)
2016-01-06 23:43:29 +01:00

529 lines
14 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#undef USE_BAKE_JITTER
ccl_device void compute_light_pass(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, RNG rng,
const bool is_combined, const bool is_ao, const bool is_sss, int sample)
{
/* initialize master radiance accumulator */
kernel_assert(kernel_data.film.use_light_pass);
path_radiance_init(L, kernel_data.film.use_light_pass);
PathRadiance L_sample;
PathState state;
Ray ray;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
bool is_sss_sample = is_sss;
ray.P = sd->P + sd->Ng;
ray.D = -sd->Ng;
ray.t = FLT_MAX;
#ifdef __CAMERA_MOTION__
ray.time = TIME_INVALID;
#endif
/* init radiance */
path_radiance_init(&L_sample, kernel_data.film.use_light_pass);
/* init path state */
path_state_init(kg, &state, &rng, sample, NULL);
/* evaluate surface shader */
float rbsdf = path_state_rng_1D(kg, &rng, &state, PRNG_BSDF);
shader_eval_surface(kg, sd, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* TODO, disable the closures we won't need */
#ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched) {
/* regular path tracer */
#endif
/* sample ambient occlusion */
if(is_combined || is_ao) {
kernel_path_ao(kg, sd, &L_sample, &state, &rng, throughput);
}
#ifdef __SUBSURFACE__
/* sample subsurface scattering */
if((is_combined || is_sss_sample) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
SubsurfaceIndirectRays ss_indirect;
kernel_path_subsurface_init_indirect(&ss_indirect);
if(kernel_path_subsurface_scatter(kg,
sd,
&L_sample,
&state,
&rng,
&ray,
&throughput,
&ss_indirect))
{
while(ss_indirect.num_rays) {
kernel_path_subsurface_setup_indirect(kg,
&ss_indirect,
&state,
&ray,
&L_sample,
&throughput);
kernel_path_indirect(kg,
&rng,
&ray,
throughput,
state.num_samples,
&state,
&L_sample);
kernel_path_subsurface_accum_indirect(&ss_indirect, &L_sample);
}
is_sss_sample = true;
}
}
#endif
/* sample light and BSDF */
if((!is_sss_sample) && (!is_ao)) {
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
}
kernel_path_surface_connect_light(kg, &rng, sd, throughput, &state, &L_sample);
if(kernel_path_surface_bounce(kg, &rng, sd, &throughput, &state, &L_sample, &ray)) {
#ifdef __LAMP_MIS__
state.ray_t = 0.0f;
#endif
/* compute indirect light */
kernel_path_indirect(kg, &rng, &ray, throughput, 1, &state, &L_sample);
/* sum and reset indirect light pass variables for the next samples */
path_radiance_sum_indirect(&L_sample);
path_radiance_reset_indirect(&L_sample);
}
}
#ifdef __BRANCHED_PATH__
}
else {
/* branched path tracer */
/* sample ambient occlusion */
if(is_combined || is_ao) {
kernel_branched_path_ao(kg, sd, &L_sample, &state, &rng, throughput);
}
#ifdef __SUBSURFACE__
/* sample subsurface scattering */
if((is_combined || is_sss_sample) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
kernel_branched_path_subsurface_scatter(kg, sd, &L_sample, &state, &rng, &ray, throughput);
}
#endif
/* sample light and BSDF */
if((!is_sss_sample) && (!is_ao)) {
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
}
#if defined(__EMISSION__)
/* direct light */
if(kernel_data.integrator.use_direct_light) {
bool all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_surface_connect_light(kg, &rng,
sd, &state, throughput, 1.0f, &L_sample, all);
}
#endif
/* indirect light */
kernel_branched_path_surface_indirect_light(kg, &rng,
sd, throughput, 1.0f, &state, &L_sample);
}
}
#endif
/* accumulate into master L */
path_radiance_accum_sample(L, &L_sample, 1);
}
ccl_device bool is_aa_pass(ShaderEvalType type)
{
switch(type) {
case SHADER_EVAL_UV:
case SHADER_EVAL_NORMAL:
return false;
default:
return true;
}
}
ccl_device bool is_light_pass(ShaderEvalType type)
{
switch(type) {
case SHADER_EVAL_AO:
case SHADER_EVAL_COMBINED:
case SHADER_EVAL_SHADOW:
case SHADER_EVAL_DIFFUSE_DIRECT:
case SHADER_EVAL_GLOSSY_DIRECT:
case SHADER_EVAL_TRANSMISSION_DIRECT:
case SHADER_EVAL_SUBSURFACE_DIRECT:
case SHADER_EVAL_DIFFUSE_INDIRECT:
case SHADER_EVAL_GLOSSY_INDIRECT:
case SHADER_EVAL_TRANSMISSION_INDIRECT:
case SHADER_EVAL_SUBSURFACE_INDIRECT:
return true;
default:
return false;
}
}
/* this helps with AA but it's not the real solution as it does not AA the geometry
* but it's better than nothing, thus committed */
ccl_device_inline float bake_clamp_mirror_repeat(float u)
{
/* use mirror repeat (like opengl texture) so that if the barycentric
* coordinate goes past the end of the triangle it is not always clamped
* to the same value, gives ugly patterns */
float fu = floorf(u);
u = u - fu;
return (((int)fu) & 1)? 1.0f - u: u;
}
ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input, ccl_global float4 *output,
ShaderEvalType type, int i, int offset, int sample)
{
ShaderData sd;
PathState state = {0};
uint4 in = input[i * 2];
uint4 diff = input[i * 2 + 1];
float3 out;
int object = in.x;
int prim = in.y;
if(prim == -1)
return;
float u = __uint_as_float(in.z);
float v = __uint_as_float(in.w);
float dudx = __uint_as_float(diff.x);
float dudy = __uint_as_float(diff.y);
float dvdx = __uint_as_float(diff.z);
float dvdy = __uint_as_float(diff.w);
int num_samples = kernel_data.integrator.aa_samples;
/* random number generator */
RNG rng = cmj_hash(offset + i, kernel_data.integrator.seed);
#ifdef USE_BAKE_JITTER
float filter_x, filter_y;
if(sample == 0) {
filter_x = filter_y = 0.5f;
}
else {
path_rng_2D(kg, &rng, sample, num_samples, PRNG_FILTER_U, &filter_x, &filter_y);
}
/* subpixel u/v offset */
if(sample > 0) {
u = bake_clamp_mirror_repeat(u + dudx*(filter_x - 0.5f) + dudy*(filter_y - 0.5f));
v = bake_clamp_mirror_repeat(v + dvdx*(filter_x - 0.5f) + dvdy*(filter_y - 0.5f));
}
#endif
/* triangle */
int shader;
float3 P, Ng;
triangle_point_normal(kg, object, prim, u, v, &P, &Ng, &shader);
/* dummy initilizations copied from SHADER_EVAL_DISPLACE */
float3 I = Ng;
float t = 0.0f;
float time = TIME_INVALID;
/* light passes */
PathRadiance L;
shader_setup_from_sample(kg, &sd, P, Ng, I, shader, object, prim, u, v, t, time);
sd.I = sd.N;
/* update differentials */
sd.dP.dx = sd.dPdu * dudx + sd.dPdv * dvdx;
sd.dP.dy = sd.dPdu * dudy + sd.dPdv * dvdy;
sd.du.dx = dudx;
sd.du.dy = dudy;
sd.dv.dx = dvdx;
sd.dv.dy = dvdy;
/* light passes */
if(is_light_pass(type)) {
compute_light_pass(kg, &sd, &L, rng,
(type == SHADER_EVAL_COMBINED),
(type == SHADER_EVAL_AO),
(type == SHADER_EVAL_SUBSURFACE_DIRECT ||
type == SHADER_EVAL_SUBSURFACE_INDIRECT),
sample);
}
switch(type) {
/* data passes */
case SHADER_EVAL_NORMAL:
{
if((sd.flag & SD_HAS_BUMP)) {
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
}
/* compression: normal = (2 * color) - 1 */
out = sd.N * 0.5f + make_float3(0.5f, 0.5f, 0.5f);
break;
}
case SHADER_EVAL_UV:
{
out = primitive_uv(kg, &sd);
break;
}
case SHADER_EVAL_DIFFUSE_COLOR:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_diffuse(kg, &sd);
break;
}
case SHADER_EVAL_GLOSSY_COLOR:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_glossy(kg, &sd);
break;
}
case SHADER_EVAL_TRANSMISSION_COLOR:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_transmission(kg, &sd);
break;
}
case SHADER_EVAL_SUBSURFACE_COLOR:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_subsurface(kg, &sd);
#endif
break;
}
case SHADER_EVAL_EMISSION:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_EMISSION);
out = shader_emissive_eval(kg, &sd);
break;
}
#ifdef __PASSES__
/* light passes */
case SHADER_EVAL_AO:
{
out = L.ao;
break;
}
case SHADER_EVAL_COMBINED:
{
out = path_radiance_clamp_and_sum(kg, &L);
break;
}
case SHADER_EVAL_SHADOW:
{
out = make_float3(L.shadow.x, L.shadow.y, L.shadow.z);
break;
}
case SHADER_EVAL_DIFFUSE_DIRECT:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_diffuse, shader_bsdf_diffuse(kg, &sd));
break;
}
case SHADER_EVAL_GLOSSY_DIRECT:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_glossy, shader_bsdf_glossy(kg, &sd));
break;
}
case SHADER_EVAL_TRANSMISSION_DIRECT:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_transmission, shader_bsdf_transmission(kg, &sd));
break;
}
case SHADER_EVAL_SUBSURFACE_DIRECT:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_subsurface, shader_bsdf_subsurface(kg, &sd));
#endif
break;
}
case SHADER_EVAL_DIFFUSE_INDIRECT:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_diffuse, shader_bsdf_diffuse(kg, &sd));
break;
}
case SHADER_EVAL_GLOSSY_INDIRECT:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_glossy, shader_bsdf_glossy(kg, &sd));
break;
}
case SHADER_EVAL_TRANSMISSION_INDIRECT:
{
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_transmission, shader_bsdf_transmission(kg, &sd));
break;
}
case SHADER_EVAL_SUBSURFACE_INDIRECT:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_subsurface, shader_bsdf_subsurface(kg, &sd));
#endif
break;
}
#endif
/* extra */
case SHADER_EVAL_ENVIRONMENT:
{
/* setup ray */
Ray ray;
ray.P = make_float3(0.0f, 0.0f, 0.0f);
ray.D = normalize(P);
ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
ray.dD = differential3_zero();
ray.dP = differential3_zero();
#endif
/* setup shader data */
shader_setup_from_background(kg, &sd, &ray);
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, &state, flag, SHADER_CONTEXT_MAIN);
break;
}
default:
{
/* no real shader, returning the position of the verts for debugging */
out = normalize(P);
break;
}
}
/* write output */
float output_fac = is_aa_pass(type)? 1.0f/num_samples: 1.0f;
if(sample == 0)
output[i] = make_float4(out.x, out.y, out.z, 1.0f) * output_fac;
else
output[i] += make_float4(out.x, out.y, out.z, 1.0f) * output_fac;
}
ccl_device void kernel_shader_evaluate(KernelGlobals *kg,
ccl_global uint4 *input,
ccl_global float4 *output,
ccl_global float *output_luma,
ShaderEvalType type,
int i,
int sample)
{
ShaderData sd;
PathState state = {0};
uint4 in = input[i];
float3 out;
if(type == SHADER_EVAL_DISPLACE) {
/* setup shader data */
int object = in.x;
int prim = in.y;
float u = __uint_as_float(in.z);
float v = __uint_as_float(in.w);
shader_setup_from_displace(kg, &sd, object, prim, u, v);
/* evaluate */
float3 P = sd.P;
shader_eval_displacement(kg, &sd, &state, SHADER_CONTEXT_MAIN);
out = sd.P - P;
}
else { // SHADER_EVAL_BACKGROUND
/* setup ray */
Ray ray;
float u = __uint_as_float(in.x);
float v = __uint_as_float(in.y);
ray.P = make_float3(0.0f, 0.0f, 0.0f);
ray.D = equirectangular_to_direction(u, v);
ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
ray.dD = differential3_zero();
ray.dP = differential3_zero();
#endif
/* setup shader data */
shader_setup_from_background(kg, &sd, &ray);
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, &state, flag, SHADER_CONTEXT_MAIN);
}
/* write output */
if(sample == 0) {
if(output != NULL) {
output[i] = make_float4(out.x, out.y, out.z, 0.0f);
}
if(output_luma != NULL) {
output_luma[i] = average(out);
}
}
else {
if(output != NULL) {
output[i] += make_float4(out.x, out.y, out.z, 0.0f);
}
if(output_luma != NULL) {
output_luma[i] += average(out);
}
}
}
CCL_NAMESPACE_END