blender/release/scripts/freestyle/style_modules/Functions0D.py
Tamito Kajiyama 21c10788d7 Freestyle Python API improvements - part 9.
* Fix for wild card import statements (e.g., "from Freestyle import *") was done.
Now import statements are either without using "from" or with all imported names
explicitly listed.

* GNU GPL header blocks were added to Python programs.  Additional code clean-up
was also made.

* Removed freestyle_init.py and extra-lines.sml that were no longer used.
2013-02-24 23:43:40 +00:00

101 lines
3.7 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
from Freestyle import Curvature2DAngleF0D, CurvePoint, ReadCompleteViewMapPixelF0D, \
ReadSteerableViewMapPixelF0D, UnaryFunction0DDouble, UnaryFunction0DMaterial, \
UnaryFunction0DVec2f
from Freestyle import ContextFunctions as CF
import math
import mathutils
class CurveMaterialF0D(UnaryFunction0DMaterial):
# A replacement of the built-in MaterialF0D for stroke creation.
# MaterialF0D does not work with Curves and Strokes.
def __call__(self, inter):
cp = inter.object
assert(isinstance(cp, CurvePoint))
fe = cp.first_svertex.get_fedge(cp.second_svertex)
assert(fe is not None)
return fe.material if fe.is_smooth else fe.material_left
class pyInverseCurvature2DAngleF0D(UnaryFunction0DDouble):
def __call__(self, inter):
func = Curvature2DAngleF0D()
c = func(inter)
return (3.1415 - c)
class pyCurvilinearLengthF0D(UnaryFunction0DDouble):
def __call__(self, inter):
cp = inter.object
assert(isinstance(cp, CurvePoint))
return cp.t2d
## estimate anisotropy of density
class pyDensityAnisotropyF0D(UnaryFunction0DDouble):
def __init__(self,level):
UnaryFunction0DDouble.__init__(self)
self.IsoDensity = ReadCompleteViewMapPixelF0D(level)
self.d0Density = ReadSteerableViewMapPixelF0D(0, level)
self.d1Density = ReadSteerableViewMapPixelF0D(1, level)
self.d2Density = ReadSteerableViewMapPixelF0D(2, level)
self.d3Density = ReadSteerableViewMapPixelF0D(3, level)
def __call__(self, inter):
c_iso = self.IsoDensity(inter)
c_0 = self.d0Density(inter)
c_1 = self.d1Density(inter)
c_2 = self.d2Density(inter)
c_3 = self.d3Density(inter)
cMax = max(max(c_0,c_1), max(c_2,c_3))
cMin = min(min(c_0,c_1), min(c_2,c_3))
if c_iso == 0:
v = 0
else:
v = (cMax-cMin)/c_iso
return v
## Returns the gradient vector for a pixel
## l
## the level at which one wants to compute the gradient
class pyViewMapGradientVectorF0D(UnaryFunction0DVec2f):
def __init__(self, l):
UnaryFunction0DVec2f.__init__(self)
self._l = l
self._step = math.pow(2,self._l)
def __call__(self, iter):
p = iter.object.point_2d
gx = CF.read_complete_view_map_pixel(self._l, int(p.x+self._step), int(p.y)) - \
CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
gy = CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y+self._step)) - \
CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
return mathutils.Vector([gx, gy])
class pyViewMapGradientNormF0D(UnaryFunction0DDouble):
def __init__(self, l):
UnaryFunction0DDouble.__init__(self)
self._l = l
self._step = math.pow(2,self._l)
def __call__(self, iter):
p = iter.object.point_2d
gx = CF.read_complete_view_map_pixel(self._l, int(p.x+self._step), int(p.y)) - \
CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
gy = CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y+self._step)) - \
CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
grad = mathutils.Vector([gx, gy])
return grad.length