blender/intern/iksolver/intern/IK_QSegment.cpp
Campbell Barton f23bfdfab4 style cleanup
2012-07-27 22:35:27 +00:00

1053 lines
22 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Original Author: Laurence
* Contributor(s): Brecht
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file iksolver/intern/IK_QSegment.cpp
* \ingroup iksolver
*/
#include "IK_QSegment.h"
#include <cmath>
// Utility functions
static MT_Matrix3x3 RotationMatrix(MT_Scalar sine, MT_Scalar cosine, int axis)
{
if (axis == 0)
return MT_Matrix3x3(1.0, 0.0, 0.0,
0.0, cosine, -sine,
0.0, sine, cosine);
else if (axis == 1)
return MT_Matrix3x3(cosine, 0.0, sine,
0.0, 1.0, 0.0,
-sine, 0.0, cosine);
else
return MT_Matrix3x3(cosine, -sine, 0.0,
sine, cosine, 0.0,
0.0, 0.0, 1.0);
}
static MT_Matrix3x3 RotationMatrix(MT_Scalar angle, int axis)
{
return RotationMatrix(sin(angle), cos(angle), axis);
}
static MT_Scalar EulerAngleFromMatrix(const MT_Matrix3x3& R, int axis)
{
MT_Scalar t = sqrt(R[0][0] * R[0][0] + R[0][1] * R[0][1]);
if (t > 16.0 * MT_EPSILON) {
if (axis == 0) return -atan2(R[1][2], R[2][2]);
else if (axis == 1) return atan2(-R[0][2], t);
else return -atan2(R[0][1], R[0][0]);
}
else {
if (axis == 0) return -atan2(-R[2][1], R[1][1]);
else if (axis == 1) return atan2(-R[0][2], t);
else return 0.0f;
}
}
static MT_Scalar safe_acos(MT_Scalar f)
{
if (f <= -1.0)
return MT_PI;
else if (f >= 1.0)
return 0.0;
else
return acos(f);
}
static MT_Scalar ComputeTwist(const MT_Matrix3x3& R)
{
// qy and qw are the y and w components of the quaternion from R
MT_Scalar qy = R[0][2] - R[2][0];
MT_Scalar qw = R[0][0] + R[1][1] + R[2][2] + 1;
MT_Scalar tau = 2.0 * atan2(qy, qw);
return tau;
}
static MT_Matrix3x3 ComputeTwistMatrix(MT_Scalar tau)
{
return RotationMatrix(tau, 1);
}
static void RemoveTwist(MT_Matrix3x3& R)
{
// compute twist parameter
MT_Scalar tau = ComputeTwist(R);
// compute twist matrix
MT_Matrix3x3 T = ComputeTwistMatrix(tau);
// remove twist
R = R * T.transposed();
}
static MT_Vector3 SphericalRangeParameters(const MT_Matrix3x3& R)
{
// compute twist parameter
MT_Scalar tau = ComputeTwist(R);
// compute swing parameters
MT_Scalar num = 2.0 * (1.0 + R[1][1]);
// singularity at pi
if (MT_abs(num) < MT_EPSILON)
// TODO: this does now rotation of size pi over z axis, but could
// be any axis, how to deal with this i'm not sure, maybe don't
// enforce limits at all then
return MT_Vector3(0.0, tau, 1.0);
num = 1.0 / sqrt(num);
MT_Scalar ax = -R[2][1] * num;
MT_Scalar az = R[0][1] * num;
return MT_Vector3(ax, tau, az);
}
static MT_Matrix3x3 ComputeSwingMatrix(MT_Scalar ax, MT_Scalar az)
{
// length of (ax, 0, az) = sin(theta/2)
MT_Scalar sine2 = ax * ax + az * az;
MT_Scalar cosine2 = sqrt((sine2 >= 1.0) ? 0.0 : 1.0 - sine2);
// compute swing matrix
MT_Matrix3x3 S(MT_Quaternion(ax, 0.0, az, -cosine2));
return S;
}
static MT_Vector3 MatrixToAxisAngle(const MT_Matrix3x3& R)
{
MT_Vector3 delta = MT_Vector3(R[2][1] - R[1][2],
R[0][2] - R[2][0],
R[1][0] - R[0][1]);
MT_Scalar c = safe_acos((R[0][0] + R[1][1] + R[2][2] - 1) / 2);
MT_Scalar l = delta.length();
if (!MT_fuzzyZero(l))
delta *= c / l;
return delta;
}
static bool EllipseClamp(MT_Scalar& ax, MT_Scalar& az, MT_Scalar *amin, MT_Scalar *amax)
{
MT_Scalar xlim, zlim, x, z;
if (ax < 0.0) {
x = -ax;
xlim = -amin[0];
}
else {
x = ax;
xlim = amax[0];
}
if (az < 0.0) {
z = -az;
zlim = -amin[1];
}
else {
z = az;
zlim = amax[1];
}
if (MT_fuzzyZero(xlim) || MT_fuzzyZero(zlim)) {
if (x <= xlim && z <= zlim)
return false;
if (x > xlim)
x = xlim;
if (z > zlim)
z = zlim;
}
else {
MT_Scalar invx = 1.0 / (xlim * xlim);
MT_Scalar invz = 1.0 / (zlim * zlim);
if ((x * x * invx + z * z * invz) <= 1.0)
return false;
if (MT_fuzzyZero(x)) {
x = 0.0;
z = zlim;
}
else {
MT_Scalar rico = z / x;
MT_Scalar old_x = x;
x = sqrt(1.0 / (invx + invz * rico * rico));
if (old_x < 0.0)
x = -x;
z = rico * x;
}
}
ax = (ax < 0.0) ? -x : x;
az = (az < 0.0) ? -z : z;
return true;
}
// IK_QSegment
IK_QSegment::IK_QSegment(int num_DoF, bool translational)
: m_parent(NULL), m_child(NULL), m_sibling(NULL), m_composite(NULL),
m_num_DoF(num_DoF), m_translational(translational)
{
m_locked[0] = m_locked[1] = m_locked[2] = false;
m_weight[0] = m_weight[1] = m_weight[2] = 1.0;
m_max_extension = 0.0;
m_start = MT_Vector3(0, 0, 0);
m_rest_basis.setIdentity();
m_basis.setIdentity();
m_translation = MT_Vector3(0, 0, 0);
m_orig_basis = m_basis;
m_orig_translation = m_translation;
}
void IK_QSegment::Reset()
{
m_locked[0] = m_locked[1] = m_locked[2] = false;
m_basis = m_orig_basis;
m_translation = m_orig_translation;
SetBasis(m_basis);
for (IK_QSegment *seg = m_child; seg; seg = seg->m_sibling)
seg->Reset();
}
void IK_QSegment::SetTransform(
const MT_Vector3& start,
const MT_Matrix3x3& rest_basis,
const MT_Matrix3x3& basis,
const MT_Scalar length
)
{
m_max_extension = start.length() + length;
m_start = start;
m_rest_basis = rest_basis;
m_orig_basis = basis;
SetBasis(basis);
m_translation = MT_Vector3(0, length, 0);
m_orig_translation = m_translation;
}
MT_Matrix3x3 IK_QSegment::BasisChange() const
{
return m_orig_basis.transposed() * m_basis;
}
MT_Vector3 IK_QSegment::TranslationChange() const
{
return m_translation - m_orig_translation;
}
IK_QSegment::~IK_QSegment()
{
if (m_parent)
m_parent->RemoveChild(this);
for (IK_QSegment *seg = m_child; seg; seg = seg->m_sibling)
seg->m_parent = NULL;
}
void IK_QSegment::SetParent(IK_QSegment *parent)
{
if (m_parent == parent)
return;
if (m_parent)
m_parent->RemoveChild(this);
if (parent) {
m_sibling = parent->m_child;
parent->m_child = this;
}
m_parent = parent;
}
void IK_QSegment::SetComposite(IK_QSegment *seg)
{
m_composite = seg;
}
void IK_QSegment::RemoveChild(IK_QSegment *child)
{
if (m_child == NULL)
return;
else if (m_child == child)
m_child = m_child->m_sibling;
else {
IK_QSegment *seg = m_child;
while (seg->m_sibling != child)
seg = seg->m_sibling;
if (child == seg->m_sibling)
seg->m_sibling = child->m_sibling;
}
}
void IK_QSegment::UpdateTransform(const MT_Transform& global)
{
// compute the global transform at the end of the segment
m_global_start = global.getOrigin() + global.getBasis() * m_start;
m_global_transform.setOrigin(m_global_start);
m_global_transform.setBasis(global.getBasis() * m_rest_basis * m_basis);
m_global_transform.translate(m_translation);
// update child transforms
for (IK_QSegment *seg = m_child; seg; seg = seg->m_sibling)
seg->UpdateTransform(m_global_transform);
}
void IK_QSegment::PrependBasis(const MT_Matrix3x3& mat)
{
m_basis = m_rest_basis.inverse() * mat * m_rest_basis * m_basis;
}
void IK_QSegment::Scale(MT_Scalar scale)
{
m_start *= scale;
m_translation *= scale;
m_orig_translation *= scale;
m_global_start *= scale;
m_global_transform.getOrigin() *= scale;
m_max_extension *= scale;
}
// IK_QSphericalSegment
IK_QSphericalSegment::IK_QSphericalSegment()
: IK_QSegment(3, false), m_limit_x(false), m_limit_y(false), m_limit_z(false)
{
}
MT_Vector3 IK_QSphericalSegment::Axis(int dof) const
{
return m_global_transform.getBasis().getColumn(dof);
}
void IK_QSphericalSegment::SetLimit(int axis, MT_Scalar lmin, MT_Scalar lmax)
{
if (lmin > lmax)
return;
if (axis == 1) {
lmin = MT_clamp(lmin, -MT_PI, MT_PI);
lmax = MT_clamp(lmax, -MT_PI, MT_PI);
m_min_y = lmin;
m_max_y = lmax;
m_limit_y = true;
}
else {
// clamp and convert to axis angle parameters
lmin = MT_clamp(lmin, -MT_PI, MT_PI);
lmax = MT_clamp(lmax, -MT_PI, MT_PI);
lmin = sin(lmin * 0.5);
lmax = sin(lmax * 0.5);
if (axis == 0) {
m_min[0] = -lmax;
m_max[0] = -lmin;
m_limit_x = true;
}
else if (axis == 2) {
m_min[1] = -lmax;
m_max[1] = -lmin;
m_limit_z = true;
}
}
}
void IK_QSphericalSegment::SetWeight(int axis, MT_Scalar weight)
{
m_weight[axis] = weight;
}
bool IK_QSphericalSegment::UpdateAngle(const IK_QJacobian &jacobian, MT_Vector3& delta, bool *clamp)
{
if (m_locked[0] && m_locked[1] && m_locked[2])
return false;
MT_Vector3 dq;
dq.x() = jacobian.AngleUpdate(m_DoF_id);
dq.y() = jacobian.AngleUpdate(m_DoF_id + 1);
dq.z() = jacobian.AngleUpdate(m_DoF_id + 2);
// Directly update the rotation matrix, with Rodrigues' rotation formula,
// to avoid singularities and allow smooth integration.
MT_Scalar theta = dq.length();
if (!MT_fuzzyZero(theta)) {
MT_Vector3 w = dq * (1.0 / theta);
MT_Scalar sine = sin(theta);
MT_Scalar cosine = cos(theta);
MT_Scalar cosineInv = 1 - cosine;
MT_Scalar xsine = w.x() * sine;
MT_Scalar ysine = w.y() * sine;
MT_Scalar zsine = w.z() * sine;
MT_Scalar xxcosine = w.x() * w.x() * cosineInv;
MT_Scalar xycosine = w.x() * w.y() * cosineInv;
MT_Scalar xzcosine = w.x() * w.z() * cosineInv;
MT_Scalar yycosine = w.y() * w.y() * cosineInv;
MT_Scalar yzcosine = w.y() * w.z() * cosineInv;
MT_Scalar zzcosine = w.z() * w.z() * cosineInv;
MT_Matrix3x3 M(
cosine + xxcosine, -zsine + xycosine, ysine + xzcosine,
zsine + xycosine, cosine + yycosine, -xsine + yzcosine,
-ysine + xzcosine, xsine + yzcosine, cosine + zzcosine);
m_new_basis = m_basis * M;
}
else
m_new_basis = m_basis;
if (m_limit_y == false && m_limit_x == false && m_limit_z == false)
return false;
MT_Vector3 a = SphericalRangeParameters(m_new_basis);
if (m_locked[0])
a.x() = m_locked_ax;
if (m_locked[1])
a.y() = m_locked_ay;
if (m_locked[2])
a.z() = m_locked_az;
MT_Scalar ax = a.x(), ay = a.y(), az = a.z();
clamp[0] = clamp[1] = clamp[2] = false;
if (m_limit_y) {
if (a.y() > m_max_y) {
ay = m_max_y;
clamp[1] = true;
}
else if (a.y() < m_min_y) {
ay = m_min_y;
clamp[1] = true;
}
}
if (m_limit_x && m_limit_z) {
if (EllipseClamp(ax, az, m_min, m_max))
clamp[0] = clamp[2] = true;
}
else if (m_limit_x) {
if (ax < m_min[0]) {
ax = m_min[0];
clamp[0] = true;
}
else if (ax > m_max[0]) {
ax = m_max[0];
clamp[0] = true;
}
}
else if (m_limit_z) {
if (az < m_min[1]) {
az = m_min[1];
clamp[2] = true;
}
else if (az > m_max[1]) {
az = m_max[1];
clamp[2] = true;
}
}
if (clamp[0] == false && clamp[1] == false && clamp[2] == false) {
if (m_locked[0] || m_locked[1] || m_locked[2])
m_new_basis = ComputeSwingMatrix(ax, az) * ComputeTwistMatrix(ay);
return false;
}
m_new_basis = ComputeSwingMatrix(ax, az) * ComputeTwistMatrix(ay);
delta = MatrixToAxisAngle(m_basis.transposed() * m_new_basis);
if (!(m_locked[0] || m_locked[2]) && (clamp[0] || clamp[2])) {
m_locked_ax = ax;
m_locked_az = az;
}
if (!m_locked[1] && clamp[1])
m_locked_ay = ay;
return true;
}
void IK_QSphericalSegment::Lock(int dof, IK_QJacobian& jacobian, MT_Vector3& delta)
{
if (dof == 1) {
m_locked[1] = true;
jacobian.Lock(m_DoF_id + 1, delta[1]);
}
else {
m_locked[0] = m_locked[2] = true;
jacobian.Lock(m_DoF_id, delta[0]);
jacobian.Lock(m_DoF_id + 2, delta[2]);
}
}
void IK_QSphericalSegment::UpdateAngleApply()
{
m_basis = m_new_basis;
}
// IK_QNullSegment
IK_QNullSegment::IK_QNullSegment()
: IK_QSegment(0, false)
{
}
// IK_QRevoluteSegment
IK_QRevoluteSegment::IK_QRevoluteSegment(int axis)
: IK_QSegment(1, false), m_axis(axis), m_angle(0.0), m_limit(false)
{
}
void IK_QRevoluteSegment::SetBasis(const MT_Matrix3x3& basis)
{
if (m_axis == 1) {
m_angle = ComputeTwist(basis);
m_basis = ComputeTwistMatrix(m_angle);
}
else {
m_angle = EulerAngleFromMatrix(basis, m_axis);
m_basis = RotationMatrix(m_angle, m_axis);
}
}
MT_Vector3 IK_QRevoluteSegment::Axis(int) const
{
return m_global_transform.getBasis().getColumn(m_axis);
}
bool IK_QRevoluteSegment::UpdateAngle(const IK_QJacobian &jacobian, MT_Vector3& delta, bool *clamp)
{
if (m_locked[0])
return false;
m_new_angle = m_angle + jacobian.AngleUpdate(m_DoF_id);
clamp[0] = false;
if (m_limit == false)
return false;
if (m_new_angle > m_max)
delta[0] = m_max - m_angle;
else if (m_new_angle < m_min)
delta[0] = m_min - m_angle;
else
return false;
clamp[0] = true;
m_new_angle = m_angle + delta[0];
return true;
}
void IK_QRevoluteSegment::Lock(int, IK_QJacobian& jacobian, MT_Vector3& delta)
{
m_locked[0] = true;
jacobian.Lock(m_DoF_id, delta[0]);
}
void IK_QRevoluteSegment::UpdateAngleApply()
{
m_angle = m_new_angle;
m_basis = RotationMatrix(m_angle, m_axis);
}
void IK_QRevoluteSegment::SetLimit(int axis, MT_Scalar lmin, MT_Scalar lmax)
{
if (lmin > lmax || m_axis != axis)
return;
// clamp and convert to axis angle parameters
lmin = MT_clamp(lmin, -MT_PI, MT_PI);
lmax = MT_clamp(lmax, -MT_PI, MT_PI);
m_min = lmin;
m_max = lmax;
m_limit = true;
}
void IK_QRevoluteSegment::SetWeight(int axis, MT_Scalar weight)
{
if (axis == m_axis)
m_weight[0] = weight;
}
// IK_QSwingSegment
IK_QSwingSegment::IK_QSwingSegment()
: IK_QSegment(2, false), m_limit_x(false), m_limit_z(false)
{
}
void IK_QSwingSegment::SetBasis(const MT_Matrix3x3& basis)
{
m_basis = basis;
RemoveTwist(m_basis);
}
MT_Vector3 IK_QSwingSegment::Axis(int dof) const
{
return m_global_transform.getBasis().getColumn((dof == 0) ? 0 : 2);
}
bool IK_QSwingSegment::UpdateAngle(const IK_QJacobian &jacobian, MT_Vector3& delta, bool *clamp)
{
if (m_locked[0] && m_locked[1])
return false;
MT_Vector3 dq;
dq.x() = jacobian.AngleUpdate(m_DoF_id);
dq.y() = 0.0;
dq.z() = jacobian.AngleUpdate(m_DoF_id + 1);
// Directly update the rotation matrix, with Rodrigues' rotation formula,
// to avoid singularities and allow smooth integration.
MT_Scalar theta = dq.length();
if (!MT_fuzzyZero(theta)) {
MT_Vector3 w = dq * (1.0 / theta);
MT_Scalar sine = sin(theta);
MT_Scalar cosine = cos(theta);
MT_Scalar cosineInv = 1 - cosine;
MT_Scalar xsine = w.x() * sine;
MT_Scalar zsine = w.z() * sine;
MT_Scalar xxcosine = w.x() * w.x() * cosineInv;
MT_Scalar xzcosine = w.x() * w.z() * cosineInv;
MT_Scalar zzcosine = w.z() * w.z() * cosineInv;
MT_Matrix3x3 M(
cosine + xxcosine, -zsine, xzcosine,
zsine, cosine, -xsine,
xzcosine, xsine, cosine + zzcosine);
m_new_basis = m_basis * M;
RemoveTwist(m_new_basis);
}
else
m_new_basis = m_basis;
if (m_limit_x == false && m_limit_z == false)
return false;
MT_Vector3 a = SphericalRangeParameters(m_new_basis);
MT_Scalar ax = 0, az = 0;
clamp[0] = clamp[1] = false;
if (m_limit_x && m_limit_z) {
ax = a.x();
az = a.z();
if (EllipseClamp(ax, az, m_min, m_max))
clamp[0] = clamp[1] = true;
}
else if (m_limit_x) {
if (ax < m_min[0]) {
ax = m_min[0];
clamp[0] = true;
}
else if (ax > m_max[0]) {
ax = m_max[0];
clamp[0] = true;
}
}
else if (m_limit_z) {
if (az < m_min[1]) {
az = m_min[1];
clamp[1] = true;
}
else if (az > m_max[1]) {
az = m_max[1];
clamp[1] = true;
}
}
if (clamp[0] == false && clamp[1] == false)
return false;
m_new_basis = ComputeSwingMatrix(ax, az);
delta = MatrixToAxisAngle(m_basis.transposed() * m_new_basis);
delta[1] = delta[2]; delta[2] = 0.0;
return true;
}
void IK_QSwingSegment::Lock(int, IK_QJacobian& jacobian, MT_Vector3& delta)
{
m_locked[0] = m_locked[1] = true;
jacobian.Lock(m_DoF_id, delta[0]);
jacobian.Lock(m_DoF_id + 1, delta[1]);
}
void IK_QSwingSegment::UpdateAngleApply()
{
m_basis = m_new_basis;
}
void IK_QSwingSegment::SetLimit(int axis, MT_Scalar lmin, MT_Scalar lmax)
{
if (lmin > lmax)
return;
// clamp and convert to axis angle parameters
lmin = MT_clamp(lmin, -MT_PI, MT_PI);
lmax = MT_clamp(lmax, -MT_PI, MT_PI);
lmin = sin(lmin * 0.5);
lmax = sin(lmax * 0.5);
// put center of ellispe in the middle between min and max
MT_Scalar offset = 0.5 * (lmin + lmax);
//lmax = lmax - offset;
if (axis == 0) {
m_min[0] = -lmax;
m_max[0] = -lmin;
m_limit_x = true;
m_offset_x = offset;
m_max_x = lmax;
}
else if (axis == 2) {
m_min[1] = -lmax;
m_max[1] = -lmin;
m_limit_z = true;
m_offset_z = offset;
m_max_z = lmax;
}
}
void IK_QSwingSegment::SetWeight(int axis, MT_Scalar weight)
{
if (axis == 0)
m_weight[0] = weight;
else if (axis == 2)
m_weight[1] = weight;
}
// IK_QElbowSegment
IK_QElbowSegment::IK_QElbowSegment(int axis)
: IK_QSegment(2, false), m_axis(axis), m_twist(0.0), m_angle(0.0),
m_cos_twist(1.0), m_sin_twist(0.0), m_limit(false), m_limit_twist(false)
{
}
void IK_QElbowSegment::SetBasis(const MT_Matrix3x3& basis)
{
m_basis = basis;
m_twist = ComputeTwist(m_basis);
RemoveTwist(m_basis);
m_angle = EulerAngleFromMatrix(basis, m_axis);
m_basis = RotationMatrix(m_angle, m_axis) * ComputeTwistMatrix(m_twist);
}
MT_Vector3 IK_QElbowSegment::Axis(int dof) const
{
if (dof == 0) {
MT_Vector3 v;
if (m_axis == 0)
v = MT_Vector3(m_cos_twist, 0, m_sin_twist);
else
v = MT_Vector3(-m_sin_twist, 0, m_cos_twist);
return m_global_transform.getBasis() * v;
}
else
return m_global_transform.getBasis().getColumn(1);
}
bool IK_QElbowSegment::UpdateAngle(const IK_QJacobian &jacobian, MT_Vector3& delta, bool *clamp)
{
if (m_locked[0] && m_locked[1])
return false;
clamp[0] = clamp[1] = false;
if (!m_locked[0]) {
m_new_angle = m_angle + jacobian.AngleUpdate(m_DoF_id);
if (m_limit) {
if (m_new_angle > m_max) {
delta[0] = m_max - m_angle;
m_new_angle = m_max;
clamp[0] = true;
}
else if (m_new_angle < m_min) {
delta[0] = m_min - m_angle;
m_new_angle = m_min;
clamp[0] = true;
}
}
}
if (!m_locked[1]) {
m_new_twist = m_twist + jacobian.AngleUpdate(m_DoF_id + 1);
if (m_limit_twist) {
if (m_new_twist > m_max_twist) {
delta[1] = m_max_twist - m_twist;
m_new_twist = m_max_twist;
clamp[1] = true;
}
else if (m_new_twist < m_min_twist) {
delta[1] = m_min_twist - m_twist;
m_new_twist = m_min_twist;
clamp[1] = true;
}
}
}
return (clamp[0] || clamp[1]);
}
void IK_QElbowSegment::Lock(int dof, IK_QJacobian& jacobian, MT_Vector3& delta)
{
if (dof == 0) {
m_locked[0] = true;
jacobian.Lock(m_DoF_id, delta[0]);
}
else {
m_locked[1] = true;
jacobian.Lock(m_DoF_id + 1, delta[1]);
}
}
void IK_QElbowSegment::UpdateAngleApply()
{
m_angle = m_new_angle;
m_twist = m_new_twist;
m_sin_twist = sin(m_twist);
m_cos_twist = cos(m_twist);
MT_Matrix3x3 A = RotationMatrix(m_angle, m_axis);
MT_Matrix3x3 T = RotationMatrix(m_sin_twist, m_cos_twist, 1);
m_basis = A * T;
}
void IK_QElbowSegment::SetLimit(int axis, MT_Scalar lmin, MT_Scalar lmax)
{
if (lmin > lmax)
return;
// clamp and convert to axis angle parameters
lmin = MT_clamp(lmin, -MT_PI, MT_PI);
lmax = MT_clamp(lmax, -MT_PI, MT_PI);
if (axis == 1) {
m_min_twist = lmin;
m_max_twist = lmax;
m_limit_twist = true;
}
else if (axis == m_axis) {
m_min = lmin;
m_max = lmax;
m_limit = true;
}
}
void IK_QElbowSegment::SetWeight(int axis, MT_Scalar weight)
{
if (axis == m_axis)
m_weight[0] = weight;
else if (axis == 1)
m_weight[1] = weight;
}
// IK_QTranslateSegment
IK_QTranslateSegment::IK_QTranslateSegment(int axis1)
: IK_QSegment(1, true)
{
m_axis_enabled[0] = m_axis_enabled[1] = m_axis_enabled[2] = false;
m_axis_enabled[axis1] = true;
m_axis[0] = axis1;
m_limit[0] = m_limit[1] = m_limit[2] = false;
}
IK_QTranslateSegment::IK_QTranslateSegment(int axis1, int axis2)
: IK_QSegment(2, true)
{
m_axis_enabled[0] = m_axis_enabled[1] = m_axis_enabled[2] = false;
m_axis_enabled[axis1] = true;
m_axis_enabled[axis2] = true;
m_axis[0] = axis1;
m_axis[1] = axis2;
m_limit[0] = m_limit[1] = m_limit[2] = false;
}
IK_QTranslateSegment::IK_QTranslateSegment()
: IK_QSegment(3, true)
{
m_axis_enabled[0] = m_axis_enabled[1] = m_axis_enabled[2] = true;
m_axis[0] = 0;
m_axis[1] = 1;
m_axis[2] = 2;
m_limit[0] = m_limit[1] = m_limit[2] = false;
}
MT_Vector3 IK_QTranslateSegment::Axis(int dof) const
{
return m_global_transform.getBasis().getColumn(m_axis[dof]);
}
bool IK_QTranslateSegment::UpdateAngle(const IK_QJacobian &jacobian, MT_Vector3& delta, bool *clamp)
{
int dof_id = m_DoF_id, dof = 0, i, clamped = false;
MT_Vector3 dx(0.0, 0.0, 0.0);
for (i = 0; i < 3; i++) {
if (!m_axis_enabled[i]) {
m_new_translation[i] = m_translation[i];
continue;
}
clamp[dof] = false;
if (!m_locked[dof]) {
m_new_translation[i] = m_translation[i] + jacobian.AngleUpdate(dof_id);
if (m_limit[i]) {
if (m_new_translation[i] > m_max[i]) {
delta[dof] = m_max[i] - m_translation[i];
m_new_translation[i] = m_max[i];
clamped = clamp[dof] = true;
}
else if (m_new_translation[i] < m_min[i]) {
delta[dof] = m_min[i] - m_translation[i];
m_new_translation[i] = m_min[i];
clamped = clamp[dof] = true;
}
}
}
dof_id++;
dof++;
}
return clamped;
}
void IK_QTranslateSegment::UpdateAngleApply()
{
m_translation = m_new_translation;
}
void IK_QTranslateSegment::Lock(int dof, IK_QJacobian& jacobian, MT_Vector3& delta)
{
m_locked[dof] = true;
jacobian.Lock(m_DoF_id + dof, delta[dof]);
}
void IK_QTranslateSegment::SetWeight(int axis, MT_Scalar weight)
{
int i;
for (i = 0; i < m_num_DoF; i++)
if (m_axis[i] == axis)
m_weight[i] = weight;
}
void IK_QTranslateSegment::SetLimit(int axis, MT_Scalar lmin, MT_Scalar lmax)
{
if (lmax < lmin)
return;
m_min[axis] = lmin;
m_max[axis] = lmax;
m_limit[axis] = true;
}
void IK_QTranslateSegment::Scale(MT_Scalar scale)
{
int i;
IK_QSegment::Scale(scale);
for (i = 0; i < 3; i++) {
m_min[0] *= scale;
m_max[1] *= scale;
}
m_new_translation *= scale;
}