blender/intern/cycles/device/device_cpu.cpp
Thomas Dinges 4a4f043bc4 Cycles: Add support for single channel float textures on CPU.
Until now, single channel textures were packed into a float4, wasting 3 floats per pixel. Memory usage of such textures is now reduced by 3/4.
Voxel Attributes such as density, flame and heat benefit from this, but also Bumpmaps with one channel.
This commit also includes some cleanup and code deduplication for image loading.

Example Smoke render from Cosmos Laundromat: http://www.pasteall.org/pic/show.php?id=102972
Memory here went down from ~600MB to ~300MB.

Reviewers: #cycles, brecht

Differential Revision: https://developer.blender.org/D1981
2016-05-11 21:58:34 +02:00

519 lines
12 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util_windows.h"
# include <OSL/oslexec.h>
#endif
#include "device.h"
#include "device_intern.h"
#include "kernel.h"
#include "kernel_compat_cpu.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "osl_shader.h"
#include "osl_globals.h"
#include "buffers.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_logging.h"
#include "util_opengl.h"
#include "util_progress.h"
#include "util_system.h"
#include "util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice : public Device
{
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
CPUDevice(DeviceInfo& info, Stats &stats, bool background)
: Device(info, stats, background)
{
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
/* do now to avoid thread issues */
system_cpu_support_sse2();
system_cpu_support_sse3();
system_cpu_support_sse41();
system_cpu_support_avx();
system_cpu_support_avx2();
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
VLOG(1) << "Will be using AVX2 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
VLOG(1) << "Will be using AVX kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
VLOG(1) << "Will be using SSE4.1 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
VLOG(1) << "Will be using SSE3kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
VLOG(1) << "Will be using SSE2 kernels.";
}
else
#endif
{
VLOG(1) << "Will be using regular kernels.";
}
}
~CPUDevice()
{
task_pool.stop();
}
void mem_alloc(device_memory& mem, MemoryType /*type*/)
{
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& /*mem*/)
{
/* no-op */
}
void mem_copy_from(device_memory& /*mem*/,
int /*y*/, int /*w*/, int /*h*/,
int /*elem*/)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType interpolation,
ExtensionType extension)
{
VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes.";
kernel_tex_copy(&kernel_globals,
name,
mem.data_pointer,
mem.data_width,
mem.data_height,
mem.data_depth,
interpolation,
extension);
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE)
thread_path_trace(*task);
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
RenderTile tile;
void(*path_trace_kernel)(KernelGlobals*, float*, unsigned int*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
path_trace_kernel = kernel_cpu_avx2_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
path_trace_kernel = kernel_cpu_avx_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
path_trace_kernel = kernel_cpu_sse41_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
path_trace_kernel = kernel_cpu_sse3_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
path_trace_kernel = kernel_cpu_sse2_path_trace;
}
else
#endif
{
path_trace_kernel = kernel_cpu_path_trace;
}
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
path_trace_kernel(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(&tile);
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
void(*convert_to_half_float_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_half_float_kernel = kernel_cpu_avx2_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_half_float_kernel = kernel_cpu_avx_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_half_float_kernel = kernel_cpu_sse41_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_half_float_kernel = kernel_cpu_sse3_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_half_float_kernel = kernel_cpu_sse2_convert_to_half_float;
}
else
#endif
{
convert_to_half_float_kernel = kernel_cpu_convert_to_half_float;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_half_float_kernel(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else {
void(*convert_to_byte_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_byte_kernel = kernel_cpu_avx2_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_byte_kernel = kernel_cpu_avx_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_byte_kernel = kernel_cpu_sse41_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_byte_kernel = kernel_cpu_sse3_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_byte_kernel = kernel_cpu_sse2_convert_to_byte;
}
else
#endif
{
convert_to_byte_kernel = kernel_cpu_convert_to_byte;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_byte_kernel(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
void(*shader_kernel)(KernelGlobals*, uint4*, float4*, float*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
shader_kernel = kernel_cpu_avx2_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
shader_kernel = kernel_cpu_avx_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
shader_kernel = kernel_cpu_sse41_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
shader_kernel = kernel_cpu_sse3_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
shader_kernel = kernel_cpu_sse2_shader;
}
else
#endif
{
shader_kernel = kernel_cpu_shader;
}
for(int sample = 0; sample < task.num_samples; sample++) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++)
shader_kernel(&kg,
(uint4*)task.shader_input,
(float4*)task.shader_output,
(float*)task.shader_output_luma,
task.shader_eval_type,
task.shader_filter,
x,
task.offset,
sample);
if(task.get_cancel() || task_pool.canceled())
break;
task.update_progress(NULL);
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
int get_split_task_count(DeviceTask& task)
{
if(task.type == DeviceTask::SHADER)
return task.get_subtask_count(TaskScheduler::num_threads(), 256);
else
return task.get_subtask_count(TaskScheduler::num_threads());
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, TaskScheduler::num_threads(), 256);
else
task.split(tasks, TaskScheduler::num_threads());
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
};
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
string device_cpu_capabilities(void)
{
string capabilities = "";
capabilities += system_cpu_support_sse2() ? "SSE2 " : "";
capabilities += system_cpu_support_sse3() ? "SSE3 " : "";
capabilities += system_cpu_support_sse41() ? "SSE41 " : "";
capabilities += system_cpu_support_avx() ? "AVX " : "";
capabilities += system_cpu_support_avx2() ? "AVX2" : "";
if(capabilities[capabilities.size() - 1] == ' ')
capabilities.resize(capabilities.size() - 1);
return capabilities;
}
CCL_NAMESPACE_END