forked from bartvdbraak/blender
a8b9402c8f
Add compile-time check for particular glibc version which fixed the issue. This makes it so own-compiled blender is the fastest in the world, and the only issue remains what should we do for release builds. After some discussion with Campbell we decided to keep it as is for now because slowdown is not that much noticeable. We'll disable this workaround for release builds when all the majority of the distros will switch to the new version of glibc.
351 lines
10 KiB
C++
351 lines
10 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
#ifndef __KERNEL_COMPAT_CPU_H__
|
|
#define __KERNEL_COMPAT_CPU_H__
|
|
|
|
#define __KERNEL_CPU__
|
|
|
|
#include "util_debug.h"
|
|
#include "util_math.h"
|
|
#include "util_simd.h"
|
|
#include "util_half.h"
|
|
#include "util_types.h"
|
|
|
|
/* On x86_64, versions of glibc < 2.16 have an issue where expf is
|
|
* much slower than the double version. This was fixed in glibc 2.16.
|
|
*/
|
|
#if !defined(__KERNEL_GPU__) && defined(__x86_64__) && defined(__x86_64__) && \
|
|
defined(__GNU_LIBRARY__) && defined(__GLIBC__ ) && defined(__GLIBC_MINOR__) && \
|
|
(__GLIBC__ <= 2 && __GLIBC_MINOR__ < 16)
|
|
# define expf(x) ((float)exp((double)(x)))
|
|
#endif
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Assertions inside the kernel only work for the CPU device, so we wrap it in
|
|
* a macro which is empty for other devices */
|
|
|
|
#define kernel_assert(cond) assert(cond)
|
|
|
|
/* Texture types to be compatible with CUDA textures. These are really just
|
|
* simple arrays and after inlining fetch hopefully revert to being a simple
|
|
* pointer lookup. */
|
|
|
|
template<typename T> struct texture {
|
|
ccl_always_inline T fetch(int index)
|
|
{
|
|
kernel_assert(index >= 0 && index < width);
|
|
return data[index];
|
|
}
|
|
|
|
#if 0
|
|
ccl_always_inline ssef fetch_ssef(int index)
|
|
{
|
|
kernel_assert(index >= 0 && index < width);
|
|
return ((ssef*)data)[index];
|
|
}
|
|
|
|
ccl_always_inline ssei fetch_ssei(int index)
|
|
{
|
|
kernel_assert(index >= 0 && index < width);
|
|
return ((ssei*)data)[index];
|
|
}
|
|
#endif
|
|
|
|
T *data;
|
|
int width;
|
|
};
|
|
|
|
template<typename T> struct texture_image {
|
|
ccl_always_inline float4 read(float4 r)
|
|
{
|
|
return r;
|
|
}
|
|
|
|
ccl_always_inline float4 read(uchar4 r)
|
|
{
|
|
float f = 1.0f/255.0f;
|
|
return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
|
|
}
|
|
|
|
ccl_always_inline int wrap_periodic(int x, int width)
|
|
{
|
|
x %= width;
|
|
if(x < 0)
|
|
x += width;
|
|
return x;
|
|
}
|
|
|
|
ccl_always_inline int wrap_clamp(int x, int width)
|
|
{
|
|
return clamp(x, 0, width-1);
|
|
}
|
|
|
|
ccl_always_inline float frac(float x, int *ix)
|
|
{
|
|
int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
|
|
*ix = i;
|
|
return x - (float)i;
|
|
}
|
|
|
|
ccl_always_inline float4 interp(float x, float y, bool periodic = true)
|
|
{
|
|
if(UNLIKELY(!data))
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
int ix, iy, nix, niy;
|
|
|
|
if(interpolation == INTERPOLATION_CLOSEST) {
|
|
frac(x*(float)width, &ix);
|
|
frac(y*(float)height, &iy);
|
|
if(periodic) {
|
|
ix = wrap_periodic(ix, width);
|
|
iy = wrap_periodic(iy, height);
|
|
|
|
}
|
|
else {
|
|
ix = wrap_clamp(ix, width);
|
|
iy = wrap_clamp(iy, height);
|
|
}
|
|
return read(data[ix + iy*width]);
|
|
}
|
|
else {
|
|
float tx = frac(x*(float)width - 0.5f, &ix);
|
|
float ty = frac(y*(float)height - 0.5f, &iy);
|
|
|
|
if(periodic) {
|
|
ix = wrap_periodic(ix, width);
|
|
iy = wrap_periodic(iy, height);
|
|
|
|
nix = wrap_periodic(ix+1, width);
|
|
niy = wrap_periodic(iy+1, height);
|
|
}
|
|
else {
|
|
ix = wrap_clamp(ix, width);
|
|
iy = wrap_clamp(iy, height);
|
|
|
|
nix = wrap_clamp(ix+1, width);
|
|
niy = wrap_clamp(iy+1, height);
|
|
}
|
|
|
|
float4 r = (1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width]);
|
|
r += (1.0f - ty)*tx*read(data[nix + iy*width]);
|
|
r += ty*(1.0f - tx)*read(data[ix + niy*width]);
|
|
r += ty*tx*read(data[nix + niy*width]);
|
|
|
|
return r;
|
|
}
|
|
}
|
|
|
|
ccl_always_inline float4 interp_3d(float x, float y, float z, bool periodic = false)
|
|
{
|
|
return interp_3d_ex(x, y, z, interpolation, periodic);
|
|
}
|
|
|
|
ccl_always_inline float4 interp_3d_ex(float x, float y, float z,
|
|
int interpolation = INTERPOLATION_LINEAR,
|
|
bool periodic = false)
|
|
{
|
|
if(UNLIKELY(!data))
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
int ix, iy, iz, nix, niy, niz;
|
|
|
|
if(interpolation == INTERPOLATION_CLOSEST) {
|
|
frac(x*(float)width, &ix);
|
|
frac(y*(float)height, &iy);
|
|
frac(z*(float)depth, &iz);
|
|
|
|
if(periodic) {
|
|
ix = wrap_periodic(ix, width);
|
|
iy = wrap_periodic(iy, height);
|
|
iz = wrap_periodic(iz, depth);
|
|
}
|
|
else {
|
|
ix = wrap_clamp(ix, width);
|
|
iy = wrap_clamp(iy, height);
|
|
iz = wrap_clamp(iz, depth);
|
|
}
|
|
|
|
return read(data[ix + iy*width + iz*width*height]);
|
|
}
|
|
else if(interpolation == INTERPOLATION_LINEAR) {
|
|
float tx = frac(x*(float)width - 0.5f, &ix);
|
|
float ty = frac(y*(float)height - 0.5f, &iy);
|
|
float tz = frac(z*(float)depth - 0.5f, &iz);
|
|
|
|
if(periodic) {
|
|
ix = wrap_periodic(ix, width);
|
|
iy = wrap_periodic(iy, height);
|
|
iz = wrap_periodic(iz, depth);
|
|
|
|
nix = wrap_periodic(ix+1, width);
|
|
niy = wrap_periodic(iy+1, height);
|
|
niz = wrap_periodic(iz+1, depth);
|
|
}
|
|
else {
|
|
ix = wrap_clamp(ix, width);
|
|
iy = wrap_clamp(iy, height);
|
|
iz = wrap_clamp(iz, depth);
|
|
|
|
nix = wrap_clamp(ix+1, width);
|
|
niy = wrap_clamp(iy+1, height);
|
|
niz = wrap_clamp(iz+1, depth);
|
|
}
|
|
|
|
float4 r;
|
|
|
|
r = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + iz*width*height]);
|
|
r += (1.0f - tz)*(1.0f - ty)*tx*read(data[nix + iy*width + iz*width*height]);
|
|
r += (1.0f - tz)*ty*(1.0f - tx)*read(data[ix + niy*width + iz*width*height]);
|
|
r += (1.0f - tz)*ty*tx*read(data[nix + niy*width + iz*width*height]);
|
|
|
|
r += tz*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + niz*width*height]);
|
|
r += tz*(1.0f - ty)*tx*read(data[nix + iy*width + niz*width*height]);
|
|
r += tz*ty*(1.0f - tx)*read(data[ix + niy*width + niz*width*height]);
|
|
r += tz*ty*tx*read(data[nix + niy*width + niz*width*height]);
|
|
|
|
return r;
|
|
}
|
|
else {
|
|
/* Tricubic b-spline interpolation. */
|
|
const float tx = frac(x*(float)width - 0.5f, &ix);
|
|
const float ty = frac(y*(float)height - 0.5f, &iy);
|
|
const float tz = frac(z*(float)depth - 0.5f, &iz);
|
|
int pix, piy, piz, nnix, nniy, nniz;
|
|
|
|
if(periodic) {
|
|
ix = wrap_periodic(ix, width);
|
|
iy = wrap_periodic(iy, height);
|
|
iz = wrap_periodic(iz, depth);
|
|
|
|
pix = wrap_periodic(ix-1, width);
|
|
piy = wrap_periodic(iy-1, height);
|
|
piz = wrap_periodic(iz-1, depth);
|
|
|
|
nix = wrap_periodic(ix+1, width);
|
|
niy = wrap_periodic(iy+1, height);
|
|
niz = wrap_periodic(iz+1, depth);
|
|
|
|
nnix = wrap_periodic(ix+2, width);
|
|
nniy = wrap_periodic(iy+2, height);
|
|
nniz = wrap_periodic(iz+2, depth);
|
|
}
|
|
else {
|
|
ix = wrap_clamp(ix, width);
|
|
iy = wrap_clamp(iy, height);
|
|
iz = wrap_clamp(iz, depth);
|
|
|
|
pix = wrap_clamp(ix-1, width);
|
|
piy = wrap_clamp(iy-1, height);
|
|
piz = wrap_clamp(iz-1, depth);
|
|
|
|
nix = wrap_clamp(ix+1, width);
|
|
niy = wrap_clamp(iy+1, height);
|
|
niz = wrap_clamp(iz+1, depth);
|
|
|
|
nnix = wrap_clamp(ix+2, width);
|
|
nniy = wrap_clamp(iy+2, height);
|
|
nniz = wrap_clamp(iz+2, depth);
|
|
}
|
|
|
|
const int xc[4] = {pix, ix, nix, nnix};
|
|
const int yc[4] = {width * piy,
|
|
width * iy,
|
|
width * niy,
|
|
width * nniy};
|
|
const int zc[4] = {width * height * piz,
|
|
width * height * iz,
|
|
width * height * niz,
|
|
width * height * nniz};
|
|
float u[4], v[4], w[4];
|
|
|
|
/* Some helper macro to keep code reasonable size,
|
|
* let compiler to inline all the matrix multiplications.
|
|
*/
|
|
#define SET_SPLINE_WEIGHTS(u, t) \
|
|
{ \
|
|
u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
|
|
u[1] = (( 0.5f * t - 1.0f) * t ) * t + (2.0f/3.0f); \
|
|
u[2] = (( -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
|
|
u[3] = (1.0f / 6.0f) * t * t * t; \
|
|
} (void)0
|
|
#define DATA(x, y, z) (read(data[xc[x] + yc[y] + zc[z]]))
|
|
#define COL_TERM(col, row) \
|
|
(v[col] * (u[0] * DATA(0, col, row) + \
|
|
u[1] * DATA(1, col, row) + \
|
|
u[2] * DATA(2, col, row) + \
|
|
u[3] * DATA(3, col, row)))
|
|
#define ROW_TERM(row) \
|
|
(w[row] * (COL_TERM(0, row) + \
|
|
COL_TERM(1, row) + \
|
|
COL_TERM(2, row) + \
|
|
COL_TERM(3, row)))
|
|
|
|
SET_SPLINE_WEIGHTS(u, tx);
|
|
SET_SPLINE_WEIGHTS(v, ty);
|
|
SET_SPLINE_WEIGHTS(w, tz);
|
|
|
|
/* Actual interpolation. */
|
|
return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);
|
|
|
|
#undef COL_TERM
|
|
#undef ROW_TERM
|
|
#undef DATA
|
|
#undef SET_SPLINE_WEIGHTS
|
|
}
|
|
}
|
|
|
|
ccl_always_inline void dimensions_set(int width_, int height_, int depth_)
|
|
{
|
|
width = width_;
|
|
height = height_;
|
|
depth = depth_;
|
|
}
|
|
|
|
T *data;
|
|
int interpolation;
|
|
int width, height, depth;
|
|
};
|
|
|
|
typedef texture<float4> texture_float4;
|
|
typedef texture<float2> texture_float2;
|
|
typedef texture<float> texture_float;
|
|
typedef texture<uint> texture_uint;
|
|
typedef texture<int> texture_int;
|
|
typedef texture<uint4> texture_uint4;
|
|
typedef texture<uchar4> texture_uchar4;
|
|
typedef texture_image<float4> texture_image_float4;
|
|
typedef texture_image<uchar4> texture_image_uchar4;
|
|
|
|
/* Macros to handle different memory storage on different devices */
|
|
|
|
#define kernel_tex_fetch(tex, index) (kg->tex.fetch(index))
|
|
#define kernel_tex_fetch_ssef(tex, index) (kg->tex.fetch_ssef(index))
|
|
#define kernel_tex_fetch_ssei(tex, index) (kg->tex.fetch_ssei(index))
|
|
#define kernel_tex_lookup(tex, t, offset, size) (kg->tex.lookup(t, offset, size))
|
|
#define kernel_tex_image_interp(tex, x, y) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp(x, y) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp(x, y))
|
|
#define kernel_tex_image_interp_3d(tex, x, y, z) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp_3d(x, y, z) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp_3d(x, y, z))
|
|
#define kernel_tex_image_interp_3d_ex(tex, x, y, z, interpolation) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp_3d_ex(x, y, z, interpolation) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp_3d_ex(x, y, z, interpolation))
|
|
|
|
#define kernel_data (kg->__data)
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __KERNEL_COMPAT_CPU_H__ */
|
|
|