blender/source/gameengine/Rasterizer/RAS_MeshObject.cpp
Brecht Van Lommel 908337bee1 Game Engine: alpha blending and sorting
=======================================

Alpha blending + sorting was revised, to fix bugs and get it
to work more predictable.

* A new per texture face "Sort" setting defines if the face
  is alpha sorted or not, instead of abusing the "ZTransp"
  setting as it did before.
* Existing files are converted to hopefully match the old
  behavior as much as possible with a version patch.
* On new meshes the Sort flag is disabled by the default, to
  avoid unexpected and hard to find slowdowns.
* Alpha sorting for faces was incredibly slow. Sorting faces
  in a mesh with 600 faces lowered the framerate from 200 to
  70 fps in my test.. the sorting there case goes about 15x
  faster now, but it is still advised to use Clip Alpha if
  possible instead of regular Alpha.
* There still various limitations in the alpha sorting code,
  I've added some comments to the code about this.

Some docs at the bottom of the page:
http://www.blender.org/development/current-projects/changes-since-246/realtime-glsl-materials/

Merged some fixes from the apricot branch, most important
change is that  tangents are now exactly the same as the rest
of Blender, instead of being computed in the game engine with a
different algorithm.

Also, the subversion was bumped to 1.
2008-07-29 15:48:31 +00:00

725 lines
16 KiB
C++

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#include "MT_MinMax.h"
#include "MT_Point3.h"
STR_String RAS_MeshObject::s_emptyname = "";
KX_ArrayOptimizer::~KX_ArrayOptimizer()
{
for (vector<KX_VertexArray*>::iterator itv = m_VertexArrayCache1.begin();
!(itv == m_VertexArrayCache1.end());++itv)
{
delete (*itv);
}
for (vector<KX_IndexArray*>::iterator iti = m_IndexArrayCache1.begin();
!(iti == m_IndexArrayCache1.end());++iti)
{
delete (*iti);
}
m_TriangleArrayCount.clear();
m_VertexArrayCache1.clear();
m_IndexArrayCache1.clear();
}
RAS_MeshObject::RAS_MeshObject(Mesh* mesh, int lightlayer)
: m_bModified(true),
m_lightlayer(lightlayer),
m_zsort(false),
m_MeshMod(true),
m_mesh(mesh),
m_class(0)
{
}
bool RAS_MeshObject::MeshModified()
{
return m_MeshMod;
}
RAS_MeshObject::~RAS_MeshObject()
{
for (vector<RAS_Polygon*>::iterator it=m_Polygons.begin();!(it==m_Polygons.end());it++)
{
delete (*it);
}
ClearArrayData();
}
unsigned int RAS_MeshObject::GetLightLayer()
{
return m_lightlayer;
}
int RAS_MeshObject::NumMaterials()
{
return m_materials.size();
}
const STR_String& RAS_MeshObject::GetMaterialName(unsigned int matid)
{
RAS_MaterialBucket* bucket = GetMaterialBucket(matid);
return bucket?bucket->GetPolyMaterial()->GetMaterialName():s_emptyname;
}
RAS_MaterialBucket* RAS_MeshObject::GetMaterialBucket(unsigned int matid)
{
if (m_materials.size() > 0 && (matid < m_materials.size()))
{
RAS_MaterialBucket::Set::const_iterator it = m_materials.begin();
while (matid--) ++it;
return *it;
}
return NULL;
}
int RAS_MeshObject::NumPolygons()
{
return m_Polygons.size();
}
RAS_Polygon* RAS_MeshObject::GetPolygon(int num)
{
return m_Polygons[num];
}
RAS_MaterialBucket::Set::iterator RAS_MeshObject::GetFirstMaterial()
{
return m_materials.begin();
}
RAS_MaterialBucket::Set::iterator RAS_MeshObject::GetLastMaterial()
{
return m_materials.end();
}
void RAS_MeshObject::SetName(STR_String name)
{
m_name = name;
}
const STR_String& RAS_MeshObject::GetName()
{
return m_name;
}
const STR_String& RAS_MeshObject::GetTextureName(unsigned int matid)
{
RAS_MaterialBucket* bucket = GetMaterialBucket(matid);
return bucket?bucket->GetPolyMaterial()->GetTextureName():s_emptyname;
}
void RAS_MeshObject::AddPolygon(RAS_Polygon* poly)
{
m_Polygons.push_back(poly);
}
void RAS_MeshObject::DebugColor(unsigned int abgr)
{
/*
int numpolys = NumPolygons();
for (int i=0;i<numpolys;i++)
{
RAS_Polygon* poly = m_polygons[i];
for (int v=0;v<poly->VertexCount();v++)
{
RAS_TexVert* vtx = poly->GetVertex(v);
vtx->setDebugRGBA(abgr);
}
}
*/
m_debugcolor = abgr;
}
void RAS_MeshObject::SetVertexColor(RAS_IPolyMaterial* mat,MT_Vector4 rgba)
{
const vecVertexArray & vertexvec = GetVertexCache(mat);
for (vector<KX_VertexArray*>::const_iterator it = vertexvec.begin(); it != vertexvec.end(); ++it)
{
KX_VertexArray::iterator vit;
for (vit=(*it)->begin(); vit != (*it)->end(); vit++)
{
vit->SetRGBA(rgba);
}
}
}
void RAS_MeshObject::SchedulePoly(const KX_VertexIndex& idx,
int numverts,
RAS_IPolyMaterial* mat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[0]);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[1]);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[2]);
if (!mat->UsesTriangles())
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(idx.m_indexarray[3]);
}
void RAS_MeshObject::ScheduleWireframePoly(const KX_VertexIndex& idx,
int numverts,
int edgecode,
RAS_IPolyMaterial* mat)
{
//int indexpos = m_IndexArrayCount[idx.m_vtxarray];
int edgetrace = 1<<(numverts-1);
bool drawedge = (edgecode & edgetrace)!=0;
edgetrace = 1;
int prevvert = idx.m_indexarray[numverts-1];
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
for (int v = 0; v < numverts; v++)
{
unsigned int curvert = idx.m_indexarray[v];
if (drawedge)
{
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(prevvert);
ao->m_IndexArrayCache1[idx.m_vtxarray]->push_back(curvert);
}
prevvert = curvert;
drawedge = (edgecode & edgetrace)!=0;
edgetrace*=2;
}
//m_IndexArrayCount[idx.m_vtxarray] = indexpos;
}
int RAS_MeshObject::FindOrAddVertex(int vtxarray,
const MT_Point3& xyz,
const MT_Point2& uv,
const MT_Point2& uv2,
const MT_Vector4& tangent,
const unsigned int rgbacolor,
const MT_Vector3& normal,
bool flat,
RAS_IPolyMaterial* mat,
int origindex)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
int numverts = ao->m_VertexArrayCache1[vtxarray]->size();//m_VertexArrayCount[vtxarray];
RAS_TexVert newvert(xyz,uv,uv2,tangent,rgbacolor,normal, flat? TV_CALCFACENORMAL: 0,origindex);
#define KX_FIND_SHARED_VERTICES
#ifdef KX_FIND_SHARED_VERTICES
if(!flat) {
for (std::vector<RAS_MatArrayIndex>::iterator it = m_xyz_index_to_vertex_index_mapping[origindex].begin();
it != m_xyz_index_to_vertex_index_mapping[origindex].end();
it++)
{
if ((*it).m_arrayindex1 == ao->m_index1 &&
(*it).m_array == vtxarray &&
*(*it).m_matid == *mat &&
(*ao->m_VertexArrayCache1[vtxarray])[(*it).m_index].closeTo(&newvert)
)
{
return (*it).m_index;
}
}
}
#endif // KX_FIND_SHARED_VERTICES
// no vertex found, add one
ao->m_VertexArrayCache1[vtxarray]->push_back(newvert);
// printf("(%f,%f,%f) ",xyz[0],xyz[1],xyz[2]);
RAS_MatArrayIndex idx;
idx.m_arrayindex1 = ao->m_index1;
idx.m_array = vtxarray;
idx.m_index = numverts;
idx.m_matid = mat;
m_xyz_index_to_vertex_index_mapping[origindex].push_back(idx);
return numverts;
}
vecVertexArray& RAS_MeshObject::GetVertexCache (RAS_IPolyMaterial* mat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
return ao->m_VertexArrayCache1;
}
int RAS_MeshObject::GetVertexArrayLength(RAS_IPolyMaterial* mat)
{
int len = 0;
const vecVertexArray & vertexvec = GetVertexCache(mat);
vector<KX_VertexArray*>::const_iterator it = vertexvec.begin();
for (; it != vertexvec.end(); ++it)
{
len += (*it)->size();
}
return len;
}
RAS_TexVert* RAS_MeshObject::GetVertex(unsigned int matid,
unsigned int index)
{
RAS_TexVert* vertex = NULL;
RAS_MaterialBucket* bucket = GetMaterialBucket(matid);
if (bucket)
{
RAS_IPolyMaterial* mat = bucket->GetPolyMaterial();
if (mat)
{
const vecVertexArray & vertexvec = GetVertexCache(mat);
vector<KX_VertexArray*>::const_iterator it = vertexvec.begin();
for (unsigned int len = 0; it != vertexvec.end(); ++it)
{
if (index < len + (*it)->size())
{
vertex = &(*(*it))[index-len];
break;
}
else
{
len += (*it)->size();
}
}
}
}
return vertex;
}
const vecIndexArrays& RAS_MeshObject::GetIndexCache (RAS_IPolyMaterial* mat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
return ao->m_IndexArrayCache1;
}
KX_ArrayOptimizer* RAS_MeshObject::GetArrayOptimizer(RAS_IPolyMaterial* polymat)
{
KX_ArrayOptimizer** aop = m_matVertexArrayS[polymat];
if(aop)
return *aop;
// didn't find array, but an array might already exist
// for a material equal to this one
for(int i=0;i<m_matVertexArrayS.size();i++) {
RAS_IPolyMaterial *mat = (RAS_IPolyMaterial*)(m_matVertexArrayS.getKey(i)->getValue());
if(*mat == *polymat) {
m_matVertexArrayS.insert(polymat, *m_matVertexArrayS.at(i));
return *m_matVertexArrayS.at(i);
}
}
// create new array
int numelements = m_matVertexArrayS.size();
m_sortedMaterials.push_back(polymat);
KX_ArrayOptimizer* ao = new KX_ArrayOptimizer(numelements);
m_matVertexArrayS.insert(polymat, ao);
return ao;
}
void RAS_MeshObject::Bucketize(double* oglmatrix,
void* clientobj,
bool useObjectColor,
const MT_Vector4& rgbavec)
{
KX_MeshSlot ms;
ms.m_clientObj = clientobj;
ms.m_mesh = this;
ms.m_OpenGLMatrix = oglmatrix;
ms.m_bObjectColor = useObjectColor;
ms.m_RGBAcolor = rgbavec;
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
// KX_ArrayOptimizer* oa = GetArrayOptimizer(bucket->GetPolyMaterial());
bucket->SetMeshSlot(ms);
}
}
void RAS_MeshObject::MarkVisible(double* oglmatrix,
void* clientobj,
bool visible,
bool useObjectColor,
const MT_Vector4& rgbavec)
{
KX_MeshSlot ms;
ms.m_clientObj = clientobj;
ms.m_mesh = this;
ms.m_OpenGLMatrix = oglmatrix;
ms.m_RGBAcolor = rgbavec;
ms.m_bObjectColor= useObjectColor;
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
// KX_ArrayOptimizer* oa = GetArrayOptimizer(bucket->GetPolyMaterial());
bucket->MarkVisibleMeshSlot(ms,visible,useObjectColor,rgbavec);
}
}
void RAS_MeshObject::RemoveFromBuckets(double* oglmatrix,
void* clientobj)
{
KX_MeshSlot ms;
ms.m_clientObj = clientobj;
ms.m_mesh = this;
ms.m_OpenGLMatrix = oglmatrix;
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
RAS_MaterialBucket* bucket = *it;
// RAS_IPolyMaterial* polymat = bucket->GetPolyMaterial();
//KX_ArrayOptimizer* oa = GetArrayOptimizer(polymat);
bucket->RemoveMeshSlot(ms);
}
}
/*
* RAS_MeshObject::GetVertex returns the vertex located somewhere in the vertexpool
* it is the clients responsibility to make sure the array and index are valid
*/
RAS_TexVert* RAS_MeshObject::GetVertex(short array,
unsigned int index,
RAS_IPolyMaterial* polymat)
{
KX_ArrayOptimizer* ao = GetArrayOptimizer(polymat);
return &((*(ao->m_VertexArrayCache1)[array])[index]);
}
void RAS_MeshObject::ClearArrayData()
{
for (int i=0;i<m_matVertexArrayS.size();i++) {
KX_ArrayOptimizer** ao = m_matVertexArrayS.at(i);
// we have duplicate entries, only free once
for(int j=i+1;j<m_matVertexArrayS.size();j++) {
if(ao == m_matVertexArrayS.at(j)) {
ao = NULL;
break;
}
}
if (ao)
delete *ao;
}
}
/**
* RAS_MeshObject::CreateNewVertices creates vertices within sorted pools of vertices that share same material
*/
int RAS_MeshObject::FindVertexArray(int numverts,
RAS_IPolyMaterial* polymat)
{
// bool found=false;
int array=-1;
KX_ArrayOptimizer* ao = GetArrayOptimizer(polymat);
for (unsigned int i=0;i<ao->m_VertexArrayCache1.size();i++)
{
if ( (ao->m_TriangleArrayCount[i] + (numverts-2)) < BUCKET_MAX_TRIANGLES)
{
if((ao->m_VertexArrayCache1[i]->size()+numverts < BUCKET_MAX_INDICES))
{
array = i;
ao->m_TriangleArrayCount[array]+=numverts-2;
break;
}
}
}
if (array == -1)
{
array = ao->m_VertexArrayCache1.size();
vector<RAS_TexVert>* va = new vector<RAS_TexVert>;
ao->m_VertexArrayCache1.push_back(va);
KX_IndexArray *ia = new KX_IndexArray();
ao->m_IndexArrayCache1.push_back(ia);
ao->m_TriangleArrayCount.push_back(numverts-2);
}
return array;
}
//void RAS_MeshObject::Transform(const MT_Transform& trans)
//{
//m_trans.translate(MT_Vector3(0,0,1));//.operator *=(trans);
// for (int i=0;i<m_Polygons.size();i++)
// {
// m_Polygons[i]->Transform(trans);
// }
//}
/*
void RAS_MeshObject::RelativeTransform(const MT_Vector3& vec)
{
for (int i=0;i<m_Polygons.size();i++)
{
m_Polygons[i]->RelativeTransform(vec);
}
}
*/
void RAS_MeshObject::UpdateMaterialList()
{
m_materials.clear();
unsigned int numpolys = m_Polygons.size();
// for all polygons, find out which material they use, and add it to the set of materials
for (unsigned int i=0;i<numpolys;i++)
{
m_materials.insert(m_Polygons[i]->GetMaterial());
}
}
struct RAS_MeshObject::polygonSlot
{
float m_z;
int m_index[4];
polygonSlot() {}
/* pnorm is the normal from the plane equation that the distance from is
* used to sort again. */
void get(const KX_VertexArray& vertexarray, const KX_IndexArray& indexarray,
int offset, int nvert, const MT_Vector3& pnorm)
{
MT_Vector3 center(0, 0, 0);
int i;
for(i=0; i<nvert; i++) {
m_index[i] = indexarray[offset+i];
center += vertexarray[m_index[i]].getLocalXYZ();
}
/* note we don't divide center by the number of vertices, since all
* polygons have the same number of vertices, and that we leave out
* the 4-th component of the plane equation since it is constant. */
m_z = MT_dot(pnorm, center);
}
void set(KX_IndexArray& indexarray, int offset, int nvert)
{
int i;
for(i=0; i<nvert; i++)
indexarray[offset+i] = m_index[i];
}
};
struct RAS_MeshObject::backtofront
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z < b.m_z;
}
};
struct RAS_MeshObject::fronttoback
{
bool operator()(const polygonSlot &a, const polygonSlot &b) const
{
return a.m_z > b.m_z;
}
};
void RAS_MeshObject::SortPolygons(const MT_Transform &transform)
{
// Limitations: sorting is quite simple, and handles many
// cases wrong, partially due to polygons being sorted per
// bucket.
//
// a) mixed triangles/quads are sorted wrong
// b) mixed materials are sorted wrong
// c) more than 65k faces are sorted wrong
// d) intersecting objects are sorted wrong
// e) intersecting polygons are sorted wrong
//
// a) can be solved by making all faces either triangles or quads
// if they need to be z-sorted. c) could be solved by allowing
// larger buckets, b) and d) cannot be solved easily if we want
// to avoid excessive state changes while drawing. e) would
// require splitting polygons.
if (!m_zsort)
return;
// Extract camera Z plane...
const MT_Vector3 pnorm(transform.getBasis()[2]);
// unneeded: const MT_Scalar pval = transform.getOrigin()[2];
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
{
if(!(*it)->IsZSort())
continue;
RAS_IPolyMaterial *mat = (*it)->GetPolyMaterial();
KX_ArrayOptimizer* ao = GetArrayOptimizer(mat);
vecIndexArrays& indexarrays = ao->m_IndexArrayCache1;
vecVertexArray& vertexarrays = ao->m_VertexArrayCache1;
unsigned int i, j, nvert = (mat->UsesTriangles())? 3: 4;
for(i=0; i<indexarrays.size(); i++) {
KX_IndexArray& indexarray = *indexarrays[i];
KX_VertexArray& vertexarray = *vertexarrays[i];
unsigned int totpoly = indexarray.size()/nvert;
vector<polygonSlot> slots(totpoly);
/* get indices and z into temporary array */
for(j=0; j<totpoly; j++)
slots[j].get(vertexarray, indexarray, j*nvert, nvert, pnorm);
/* sort (stable_sort might be better, if flickering happens?) */
sort(slots.begin(), slots.end(), backtofront());
/* get indices from temporary array again */
for(j=0; j<totpoly; j++)
slots[j].set(indexarray, j*nvert, nvert);
}
}
}
void RAS_MeshObject::SchedulePolygons(int drawingmode)
{
if (m_bModified)
{
int i, numpolys = m_Polygons.size();
for (RAS_MaterialBucket::Set::iterator it = m_materials.begin();it!=m_materials.end();++it)
if ((*it)->IsZSort())
m_zsort = true;
if (drawingmode == RAS_IRasterizer::KX_WIREFRAME)
{
for (i=0;i<numpolys;i++)
{
RAS_Polygon* poly = m_Polygons[i];
if (poly->IsVisible())
ScheduleWireframePoly(poly->GetVertexIndexBase(),poly->VertexCount(),poly->GetEdgeCode(),
poly->GetMaterial()->GetPolyMaterial());
}
m_zsort = false;
}
else
{
for (i=0;i<numpolys;i++)
{
RAS_Polygon* poly = m_Polygons[i];
if (poly->IsVisible())
SchedulePoly(poly->GetVertexIndexBase(),poly->VertexCount(),
poly->GetMaterial()->GetPolyMaterial());
}
}
m_bModified = false;
m_MeshMod = true;
}
}