blender/intern/cycles/util/util_array.h
Sergey Sharybin c86d4b1d80 Cycles: Cleanup, split array from vector
Those are similar but different types, no reason to keep
their definitions in a single file.
2018-11-09 11:54:24 +01:00

290 lines
5.3 KiB
C++

/*
* Copyright 2011-2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_ARRAY_H__
#define __UTIL_ARRAY_H__
#include <cassert>
#include <cstring>
#include "util/util_aligned_malloc.h"
#include "util/util_guarded_allocator.h"
#include "util/util_types.h"
#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
/* Simplified version of vector, serving multiple purposes:
* - somewhat faster in that it does not clear memory on resize/alloc,
* this was actually showing up in profiles quite significantly. it
* also does not run any constructors/destructors
* - if this is used, we are not tempted to use inefficient operations
* - aligned allocation for CPU native data types */
template<typename T, size_t alignment = MIN_ALIGNMENT_CPU_DATA_TYPES>
class array
{
public:
array()
: data_(NULL),
datasize_(0),
capacity_(0)
{}
explicit array(size_t newsize)
{
if(newsize == 0) {
data_ = NULL;
datasize_ = 0;
capacity_ = 0;
}
else {
data_ = mem_allocate(newsize);
datasize_ = newsize;
capacity_ = datasize_;
}
}
array(const array& from)
{
if(from.datasize_ == 0) {
data_ = NULL;
datasize_ = 0;
capacity_ = 0;
}
else {
data_ = mem_allocate(from.datasize_);
memcpy(data_, from.data_, from.datasize_*sizeof(T));
datasize_ = from.datasize_;
capacity_ = datasize_;
}
}
array& operator=(const array& from)
{
if(this != &from) {
resize(from.size());
memcpy((void*)data_, from.data_, datasize_*sizeof(T));
}
return *this;
}
array& operator=(const vector<T>& from)
{
resize(from.size());
if(from.size() > 0) {
memcpy(data_, &from[0], datasize_*sizeof(T));
}
return *this;
}
~array()
{
mem_free(data_, capacity_);
}
bool operator==(const array<T>& other) const
{
if(datasize_ != other.datasize_) {
return false;
}
return memcmp(data_, other.data_, datasize_*sizeof(T)) == 0;
}
bool operator!=(const array<T>& other) const
{
return !(*this == other);
}
void steal_data(array& from)
{
if(this != &from) {
clear();
data_ = from.data_;
datasize_ = from.datasize_;
capacity_ = from.capacity_;
from.data_ = NULL;
from.datasize_ = 0;
from.capacity_ = 0;
}
}
T *steal_pointer()
{
T *ptr = data_;
data_ = NULL;
clear();
return ptr;
}
T* resize(size_t newsize)
{
if(newsize == 0) {
clear();
}
else if(newsize != datasize_) {
if(newsize > capacity_) {
T *newdata = mem_allocate(newsize);
if(newdata == NULL) {
/* Allocation failed, likely out of memory. */
clear();
return NULL;
}
else if(data_ != NULL) {
memcpy((void *)newdata,
data_,
((datasize_ < newsize)? datasize_: newsize)*sizeof(T));
mem_free(data_, capacity_);
}
data_ = newdata;
capacity_ = newsize;
}
datasize_ = newsize;
}
return data_;
}
T* resize(size_t newsize, const T& value)
{
size_t oldsize = size();
resize(newsize);
for(size_t i = oldsize; i < size(); i++) {
data_[i] = value;
}
return data_;
}
void clear()
{
if(data_ != NULL) {
mem_free(data_, capacity_);
data_ = NULL;
}
datasize_ = 0;
capacity_ = 0;
}
size_t empty() const
{
return datasize_ == 0;
}
size_t size() const
{
return datasize_;
}
T* data()
{
return data_;
}
const T* data() const
{
return data_;
}
T& operator[](size_t i) const
{
assert(i < datasize_);
return data_[i];
}
void reserve(size_t newcapacity)
{
if(newcapacity > capacity_) {
T *newdata = mem_allocate(newcapacity);
if(data_ != NULL) {
memcpy(newdata, data_, ((datasize_ < newcapacity)? datasize_: newcapacity)*sizeof(T));
mem_free(data_, capacity_);
}
data_ = newdata;
capacity_ = newcapacity;
}
}
size_t capacity() const
{
return capacity_;
}
// do not use this method unless you are sure the code is not performance critical
void push_back_slow(const T& t)
{
if(capacity_ == datasize_)
{
reserve(datasize_ == 0 ? 1 : (size_t)((datasize_ + 1) * 1.2));
}
data_[datasize_++] = t;
}
void push_back_reserved(const T& t)
{
assert(datasize_ < capacity_);
push_back_slow(t);
}
void append(const array<T>& from)
{
if(from.size()) {
size_t old_size = size();
resize(old_size + from.size());
memcpy(data_ + old_size, from.data(), sizeof(T) * from.size());
}
}
protected:
inline T* mem_allocate(size_t N)
{
if(N == 0) {
return NULL;
}
T *mem = (T*)util_aligned_malloc(sizeof(T)*N, alignment);
if(mem != NULL) {
util_guarded_mem_alloc(sizeof(T)*N);
}
else {
throw std::bad_alloc();
}
return mem;
}
inline void mem_free(T *mem, size_t N)
{
if(mem != NULL) {
util_guarded_mem_free(sizeof(T)*N);
util_aligned_free(mem);
}
}
T *data_;
size_t datasize_;
size_t capacity_;
};
CCL_NAMESPACE_END
#endif /* __UTIL_ARRAY_H__ */