forked from bartvdbraak/blender
704 lines
22 KiB
Python
704 lines
22 KiB
Python
# ##### BEGIN GPL LICENSE BLOCK #####
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public License
|
|
# as published by the Free Software Foundation; either version 2
|
|
# of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
#
|
|
# ##### END GPL LICENSE BLOCK #####
|
|
|
|
# Filename : ChainingIterators.py
|
|
# Author : Stephane Grabli
|
|
# Date : 04/08/2005
|
|
# Purpose : Chaining Iterators to be used with chaining operators
|
|
|
|
from freestyle import AdjacencyIterator, ChainingIterator, ExternalContourUP1D, Nature, TVertex
|
|
from freestyle import ContextFunctions as CF
|
|
|
|
## the natural chaining iterator
|
|
## It follows the edges of same nature following the topology of
|
|
## objects with preseance on silhouettes, then borders,
|
|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
|
|
## You can specify whether to stay in the selection or not.
|
|
class pyChainSilhouetteIterator(ChainingIterator):
|
|
def __init__(self, stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, True, None, True)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
if (oNature & natures[i]) != 0:
|
|
if natures[i] != oNature:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = it.object
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
return winner
|
|
|
|
## the natural chaining iterator
|
|
## It follows the edges of same nature on the same
|
|
## objects with preseance on silhouettes, then borders,
|
|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
|
|
## You can specify whether to stay in the selection or not.
|
|
## You can specify whether to chain iterate over edges that were
|
|
## already visited or not.
|
|
class pyChainSilhouetteGenericIterator(ChainingIterator):
|
|
def __init__(self, stayInSelection=True, stayInUnvisited=True):
|
|
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited, None, True)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
ve = it.object
|
|
if ve.id == self.current_edge.id:
|
|
it.increment()
|
|
continue
|
|
if (oNature & natures[i]) != 0:
|
|
if natures[i] != oNature:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = ve
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
return winner
|
|
|
|
class pyExternalContourChainingIterator(ChainingIterator):
|
|
def __init__(self):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._isExternalContour = ExternalContourUP1D()
|
|
def init(self):
|
|
self._nEdges = 0
|
|
self._isInSelection = 1
|
|
def checkViewEdge(self, ve, orientation):
|
|
if orientation != 0:
|
|
vertex = ve.second_svertex()
|
|
else:
|
|
vertex = ve.first_svertex()
|
|
it = AdjacencyIterator(vertex,1,1)
|
|
while not it.is_end:
|
|
ave = it.object
|
|
if self._isExternalContour(ave):
|
|
return 1
|
|
it.increment()
|
|
print("pyExternlContourChainingIterator : didn't find next edge")
|
|
return 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if self._isExternalContour(ve):
|
|
if ve.time_stamp == CF.get_time_stamp():
|
|
winner = ve
|
|
it.increment()
|
|
|
|
self._nEdges = self._nEdges+1
|
|
if winner is None:
|
|
orient = 1
|
|
it = AdjacencyIterator(iter)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if it.is_incoming:
|
|
orient = 0
|
|
good = self.checkViewEdge(ve,orient)
|
|
if good != 0:
|
|
winner = ve
|
|
it.increment()
|
|
return winner
|
|
|
|
## the natural chaining iterator
|
|
## with a sketchy multiple touch
|
|
class pySketchyChainSilhouetteIterator(ChainingIterator):
|
|
def __init__(self, nRounds=3,stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, False, None, True)
|
|
self._timeStamp = CF.get_time_stamp()+nRounds
|
|
self._nRounds = nRounds
|
|
def init(self):
|
|
self._timeStamp = CF.get_time_stamp()+self._nRounds
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
ve = it.object
|
|
if ve.id == self.current_edge.id:
|
|
it.increment()
|
|
continue
|
|
if (oNature & natures[i]) != 0:
|
|
if (natures[i] != oNature) != 0:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = ve
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is None:
|
|
winner = self.current_edge
|
|
if winner.chaining_time_stamp == self._timeStamp:
|
|
winner = None
|
|
return winner
|
|
|
|
|
|
# Chaining iterator designed for sketchy style.
|
|
# can chain several times the same ViewEdge
|
|
# in order to produce multiple strokes per ViewEdge.
|
|
class pySketchyChainingIterator(ChainingIterator):
|
|
def __init__(self, nRounds=3, stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, False, None, True)
|
|
self._timeStamp = CF.get_time_stamp()+nRounds
|
|
self._nRounds = nRounds
|
|
def init(self):
|
|
self._timeStamp = CF.get_time_stamp()+self._nRounds
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == self.current_edge.id:
|
|
it.increment()
|
|
continue
|
|
winner = ve
|
|
it.increment()
|
|
if winner is None:
|
|
winner = self.current_edge
|
|
if winner.chaining_time_stamp == self._timeStamp:
|
|
return None
|
|
return winner
|
|
|
|
|
|
## Chaining iterator that fills small occlusions
|
|
## percent
|
|
## The max length of the occluded part
|
|
## expressed in % of the total chain length
|
|
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
|
|
def __init__(self, percent):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = 0
|
|
self._percent = float(percent)
|
|
def init(self):
|
|
# each time we're evaluating a chain length
|
|
# we try to do it once. Thus we reinit
|
|
# the chain length here:
|
|
self._length = 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.time_stamp != CF.get_time_stamp():
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# if not, let's check whether it's short enough with
|
|
# respect to the chain made without staying in the selection
|
|
#------------------------------------------------------------
|
|
# Did we compute the prospective chain length already ?
|
|
if self._length == 0:
|
|
#if not, let's do it
|
|
_it = pyChainSilhouetteGenericIterator(0,0)
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
_it.init()
|
|
while not _it.is_end:
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.increment()
|
|
if _it.is_begin:
|
|
break;
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
if not _it.is_begin:
|
|
_it.decrement()
|
|
while (not _it.is_end) and (not _it.is_begin):
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.decrement()
|
|
|
|
# let's do the comparison:
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if connexl > self._percent * self._length:
|
|
winner = None
|
|
return winner
|
|
|
|
## Chaining iterator that fills small occlusions
|
|
## size
|
|
## The max length of the occluded part
|
|
## expressed in pixels
|
|
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
|
|
def __init__(self, length):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = float(length)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
#print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.time_stamp != CF.get_time_stamp():
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if connexl > self._length:
|
|
winner = None
|
|
return winner
|
|
|
|
|
|
## Chaining iterator that fills small occlusions
|
|
## percent
|
|
## The max length of the occluded part
|
|
## expressed in % of the total chain length
|
|
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
|
|
def __init__(self, percent, l):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = 0
|
|
self._absLength = l
|
|
self._percent = float(percent)
|
|
def init(self):
|
|
# each time we're evaluating a chain length
|
|
# we try to do it once. Thus we reinit
|
|
# the chain length here:
|
|
self._length = 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.time_stamp != CF.get_time_stamp():
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# if not, let's check whether it's short enough with
|
|
# respect to the chain made without staying in the selection
|
|
#------------------------------------------------------------
|
|
# Did we compute the prospective chain length already ?
|
|
if self._length == 0:
|
|
#if not, let's do it
|
|
_it = pyChainSilhouetteGenericIterator(0,0)
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
_it.init()
|
|
while not _it.is_end:
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.increment()
|
|
if _it.is_begin:
|
|
break;
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
if not _it.is_begin:
|
|
_it.decrement()
|
|
while (not _it.is_end) and (not _it.is_begin):
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.decrement()
|
|
|
|
# let's do the comparison:
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if (connexl > self._percent * self._length) or (connexl > self._absLength):
|
|
winner = None
|
|
return winner
|
|
|
|
## Chaining iterator that fills small occlusions without caring about the
|
|
## actual selection
|
|
## percent
|
|
## The max length of the occluded part
|
|
## expressed in % of the total chain length
|
|
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
|
|
def __init__(self, percent, l):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = 0
|
|
self._absLength = l
|
|
self._percent = float(percent)
|
|
def init(self):
|
|
# each time we're evaluating a chain length
|
|
# we try to do it once. Thus we reinit
|
|
# the chain length here:
|
|
self._length = 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.qi != 0:
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# if not, let's check whether it's short enough with
|
|
# respect to the chain made without staying in the selection
|
|
#------------------------------------------------------------
|
|
# Did we compute the prospective chain length already ?
|
|
if self._length == 0:
|
|
#if not, let's do it
|
|
_it = pyChainSilhouetteGenericIterator(0,0)
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
_it.init()
|
|
while not _it.is_end:
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.increment()
|
|
if _it.is_begin:
|
|
break;
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
if not _it.is_begin:
|
|
_it.decrement()
|
|
while (not _it.is_end) and (not _it.is_begin):
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.decrement()
|
|
|
|
# let's do the comparison:
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while not _cit.is_end and _cit.object.qi != 0:
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if (connexl > self._percent * self._length) or (connexl > self._absLength):
|
|
winner = None
|
|
return winner
|
|
|
|
|
|
## the natural chaining iterator
|
|
## It follows the edges of same nature on the same
|
|
## objects with preseance on silhouettes, then borders,
|
|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
|
|
## You can specify whether to stay in the selection or not.
|
|
class pyNoIdChainSilhouetteIterator(ChainingIterator):
|
|
def __init__(self, stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, True, None, True)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
feB = self.current_edge.last_fedge
|
|
feA = ve.first_fedge
|
|
vB = feB.second_svertex
|
|
vA = feA.first_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
feA = self.current_edge.first_fedge
|
|
feB = ve.last_fedge
|
|
vB = feB.second_svertex
|
|
vA = feA.first_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
feA = self.current_edge.last_fedge
|
|
feB = ve.last_fedge
|
|
vB = feB.second_svertex
|
|
vA = feA.second_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
feA = self.current_edge.first_fedge
|
|
feB = ve.first_fedge
|
|
vB = feB.first_svertex
|
|
vA = feA.first_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
if (oNature & natures[i]) != 0:
|
|
if natures[i] != oNature:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = it.object
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
return winner
|
|
|