blender/intern/elbeem/intern/ntl_matrices.h
2011-02-25 10:51:01 +00:00

784 lines
20 KiB
C++

/** \file elbeem/intern/ntl_matrices.h
* \ingroup elbeem
*/
/******************************************************************************
*
* El'Beem - Free Surface Fluid Simulation with the Lattice Boltzmann Method
* Copyright 2003-2006 Nils Thuerey
*
* Basic matrix utility include file
*
*****************************************************************************/
#ifndef NTL_MATRICES_H
#include "ntl_vector3dim.h"
// The basic vector class
template<class Scalar>
class ntlMatrix4x4
{
public:
// Constructor
inline ntlMatrix4x4(void );
// Copy-Constructor
inline ntlMatrix4x4(const ntlMatrix4x4<Scalar> &v );
// construct a vector from one Scalar
inline ntlMatrix4x4(Scalar);
// construct a vector from three Scalars
inline ntlMatrix4x4(Scalar, Scalar, Scalar);
// Assignment operator
inline const ntlMatrix4x4<Scalar>& operator= (const ntlMatrix4x4<Scalar>& v);
// Assignment operator
inline const ntlMatrix4x4<Scalar>& operator= (Scalar s);
// Assign and add operator
inline const ntlMatrix4x4<Scalar>& operator+= (const ntlMatrix4x4<Scalar>& v);
// Assign and add operator
inline const ntlMatrix4x4<Scalar>& operator+= (Scalar s);
// Assign and sub operator
inline const ntlMatrix4x4<Scalar>& operator-= (const ntlMatrix4x4<Scalar>& v);
// Assign and sub operator
inline const ntlMatrix4x4<Scalar>& operator-= (Scalar s);
// Assign and mult operator
inline const ntlMatrix4x4<Scalar>& operator*= (const ntlMatrix4x4<Scalar>& v);
// Assign and mult operator
inline const ntlMatrix4x4<Scalar>& operator*= (Scalar s);
// Assign and div operator
inline const ntlMatrix4x4<Scalar>& operator/= (const ntlMatrix4x4<Scalar>& v);
// Assign and div operator
inline const ntlMatrix4x4<Scalar>& operator/= (Scalar s);
// unary operator
inline ntlMatrix4x4<Scalar> operator- () const;
// binary operator add
inline ntlMatrix4x4<Scalar> operator+ (const ntlMatrix4x4<Scalar>&) const;
// binary operator add
inline ntlMatrix4x4<Scalar> operator+ (Scalar) const;
// binary operator sub
inline ntlMatrix4x4<Scalar> operator- (const ntlMatrix4x4<Scalar>&) const;
// binary operator sub
inline ntlMatrix4x4<Scalar> operator- (Scalar) const;
// binary operator mult
inline ntlMatrix4x4<Scalar> operator* (const ntlMatrix4x4<Scalar>&) const;
// binary operator mult
inline ntlVector3Dim<Scalar> operator* (const ntlVector3Dim<Scalar>&) const;
// binary operator mult
inline ntlMatrix4x4<Scalar> operator* (Scalar) const;
// binary operator div
inline ntlMatrix4x4<Scalar> operator/ (Scalar) const;
// init function
//! init identity matrix
inline void initId();
//! init rotation matrix
inline void initTranslation(Scalar x, Scalar y, Scalar z);
//! init rotation matrix
inline void initRotationX(Scalar rot);
inline void initRotationY(Scalar rot);
inline void initRotationZ(Scalar rot);
inline void initRotationXYZ(Scalar rotx,Scalar roty, Scalar rotz);
//! init scaling matrix
inline void initScaling(Scalar scale);
inline void initScaling(Scalar x, Scalar y, Scalar z);
//! from 16 value array (init id if all 0)
inline void initArrayCheck(Scalar *array);
//! decompose matrix
void decompose(ntlVector3Dim<Scalar> &trans,ntlVector3Dim<Scalar> &scale,ntlVector3Dim<Scalar> &rot,ntlVector3Dim<Scalar> &shear);
//! public to avoid [][] operators
Scalar value[4][4]; //< Storage of vector values
protected:
};
//------------------------------------------------------------------------------
// TYPEDEFS
//------------------------------------------------------------------------------
// a 3D vector for graphics output, typically float?
//typedef ntlMatrix4x4<float> ntlVec3Gfx;
//typedef ntlMatrix4x4<double> ntlMat4d;
typedef ntlMatrix4x4<double> ntlMat4d;
// a 3D vector with single precision
typedef ntlMatrix4x4<float> ntlMat4f;
// a 3D vector with grafix precision
typedef ntlMatrix4x4<gfxReal> ntlMat4Gfx;
// a 3D integer vector
typedef ntlMatrix4x4<int> ntlMat4i;
//------------------------------------------------------------------------------
// STREAM FUNCTIONS
//------------------------------------------------------------------------------
/*************************************************************************
Outputs the object in human readable form using the format
[x,y,z]
*/
template<class Scalar>
std::ostream&
operator<<( std::ostream& os, const ntlMatrix4x4<Scalar>& m )
{
for(int i=0; i<4; i++) {
os << '|' << m.value[i][0] << ", " << m.value[i][1] << ", " << m.value[i][2] << ", " << m.value[i][3] << '|';
}
return os;
}
/*************************************************************************
Reads the contents of the object from a stream using the same format
as the output operator.
*/
template<class Scalar>
std::istream&
operator>>( std::istream& is, ntlMatrix4x4<Scalar>& m )
{
char c;
char dummy[3];
for(int i=0; i<4; i++) {
is >> c >> m.value[i][0] >> dummy >> m.value[i][1] >> dummy >> m.value[i][2] >> dummy >> m.value[i][3] >> c;
}
return is;
}
//------------------------------------------------------------------------------
// VECTOR inline FUNCTIONS
//------------------------------------------------------------------------------
/*************************************************************************
Constructor.
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>::ntlMatrix4x4( void )
{
#ifdef MATRIX_INIT_ZERO
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] = 0.0;
}
}
#endif
}
/*************************************************************************
Copy-Constructor.
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>::ntlMatrix4x4( const ntlMatrix4x4<Scalar> &v )
{
value[0][0] = v.value[0][0]; value[0][1] = v.value[0][1]; value[0][2] = v.value[0][2]; value[0][3] = v.value[0][3];
value[1][0] = v.value[1][0]; value[1][1] = v.value[1][1]; value[1][2] = v.value[1][2]; value[1][3] = v.value[1][3];
value[2][0] = v.value[2][0]; value[2][1] = v.value[2][1]; value[2][2] = v.value[2][2]; value[2][3] = v.value[2][3];
value[3][0] = v.value[3][0]; value[3][1] = v.value[3][1]; value[3][2] = v.value[3][2]; value[3][3] = v.value[3][3];
}
/*************************************************************************
Constructor for a vector from a single Scalar. All components of
the vector get the same value.
\param s The value to set
\return The new vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>::ntlMatrix4x4(Scalar s )
{
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] = s;
}
}
}
/*************************************************************************
Copy a ntlMatrix4x4 componentwise.
\param v vector with values to be copied
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator=( const ntlMatrix4x4<Scalar> &v )
{
value[0][0] = v.value[0][0]; value[0][1] = v.value[0][1]; value[0][2] = v.value[0][2]; value[0][3] = v.value[0][3];
value[1][0] = v.value[1][0]; value[1][1] = v.value[1][1]; value[1][2] = v.value[1][2]; value[1][3] = v.value[1][3];
value[2][0] = v.value[2][0]; value[2][1] = v.value[2][1]; value[2][2] = v.value[2][2]; value[2][3] = v.value[2][3];
value[3][0] = v.value[3][0]; value[3][1] = v.value[3][1]; value[3][2] = v.value[3][2]; value[3][3] = v.value[3][3];
return *this;
}
/*************************************************************************
Copy a Scalar to each component.
\param s The value to copy
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator=(Scalar s)
{
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] = s;
}
}
return *this;
}
/*************************************************************************
Add another ntlMatrix4x4 componentwise.
\param v vector with values to be added
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator+=( const ntlMatrix4x4<Scalar> &v )
{
value[0][0] += v.value[0][0]; value[0][1] += v.value[0][1]; value[0][2] += v.value[0][2]; value[0][3] += v.value[0][3];
value[1][0] += v.value[1][0]; value[1][1] += v.value[1][1]; value[1][2] += v.value[1][2]; value[1][3] += v.value[1][3];
value[2][0] += v.value[2][0]; value[2][1] += v.value[2][1]; value[2][2] += v.value[2][2]; value[2][3] += v.value[2][3];
value[3][0] += v.value[3][0]; value[3][1] += v.value[3][1]; value[3][2] += v.value[3][2]; value[3][3] += v.value[3][3];
return *this;
}
/*************************************************************************
Add a Scalar value to each component.
\param s Value to add
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator+=(Scalar s)
{
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] += s;
}
}
return *this;
}
/*************************************************************************
Subtract another vector componentwise.
\param v vector of values to subtract
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator-=( const ntlMatrix4x4<Scalar> &v )
{
value[0][0] -= v.value[0][0]; value[0][1] -= v.value[0][1]; value[0][2] -= v.value[0][2]; value[0][3] -= v.value[0][3];
value[1][0] -= v.value[1][0]; value[1][1] -= v.value[1][1]; value[1][2] -= v.value[1][2]; value[1][3] -= v.value[1][3];
value[2][0] -= v.value[2][0]; value[2][1] -= v.value[2][1]; value[2][2] -= v.value[2][2]; value[2][3] -= v.value[2][3];
value[3][0] -= v.value[3][0]; value[3][1] -= v.value[3][1]; value[3][2] -= v.value[3][2]; value[3][3] -= v.value[3][3];
return *this;
}
/*************************************************************************
Subtract a Scalar value from each component.
\param s Value to subtract
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator-=(Scalar s)
{
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] -= s;
}
}
return *this;
}
/*************************************************************************
Multiply with another vector componentwise.
\param v vector of values to multiply with
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator*=( const ntlMatrix4x4<Scalar> &v )
{
ntlMatrix4x4<Scalar> nv(0.0);
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
for(int k=0;k<4;k++)
nv.value[i][j] += (value[i][k] * v.value[k][j]);
}
}
*this = nv;
return *this;
}
/*************************************************************************
Multiply each component with a Scalar value.
\param s Value to multiply with
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator*=(Scalar s)
{
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] *= s;
}
}
return *this;
}
/*************************************************************************
Divide each component by a Scalar value.
\param s Value to divide by
\return Reference to self
*/
template<class Scalar>
inline const ntlMatrix4x4<Scalar>&
ntlMatrix4x4<Scalar>::operator/=(Scalar s)
{
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] /= s;
}
}
return *this;
}
//------------------------------------------------------------------------------
// unary operators
//------------------------------------------------------------------------------
/*************************************************************************
Build componentwise the negative this vector.
\return The new (negative) vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator-() const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = -value[i][j];
}
}
return nv;
}
//------------------------------------------------------------------------------
// binary operators
//------------------------------------------------------------------------------
/*************************************************************************
Build a vector with another vector added componentwise.
\param v The second vector to add
\return The sum vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator+( const ntlMatrix4x4<Scalar> &v ) const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = value[i][j] + v.value[i][j];
}
}
return nv;
}
/*************************************************************************
Build a vector with a Scalar value added to each component.
\param s The Scalar value to add
\return The sum vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator+(Scalar s) const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = value[i][j] + s;
}
}
return nv;
}
/*************************************************************************
Build a vector with another vector subtracted componentwise.
\param v The second vector to subtract
\return The difference vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator-( const ntlMatrix4x4<Scalar> &v ) const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = value[i][j] - v.value[i][j];
}
}
return nv;
}
/*************************************************************************
Build a vector with a Scalar value subtracted componentwise.
\param s The Scalar value to subtract
\return The difference vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator-(Scalar s ) const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = value[i][j] - s;
}
}
return nv;
}
/*************************************************************************
Build a ntlMatrix4x4 with a Scalar value multiplied to each component.
\param s The Scalar value to multiply with
\return The product vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator*(Scalar s) const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = value[i][j] * s;
}
}
return nv;
}
/*************************************************************************
Build a vector divided componentwise by a Scalar value.
\param s The Scalar value to divide by
\return The ratio vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator/(Scalar s) const
{
ntlMatrix4x4<Scalar> nv;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
nv[i][j] = value[i][j] / s;
}
}
return nv;
}
/*************************************************************************
Build a vector with another vector multiplied by componentwise.
\param v The second vector to muliply with
\return The product vector
*/
template<class Scalar>
inline ntlMatrix4x4<Scalar>
ntlMatrix4x4<Scalar>::operator*( const ntlMatrix4x4<Scalar>& v) const
{
ntlMatrix4x4<Scalar> nv(0.0);
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
for(int k=0;k<4;k++)
nv.value[i][j] += (value[i][k] * v.value[k][j]);
}
}
return nv;
}
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlMatrix4x4<Scalar>::operator*( const ntlVector3Dim<Scalar>& v) const
{
ntlVector3Dim<Scalar> nvec(0.0);
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
nvec[i] += (v[j] * value[i][j]);
}
}
// assume normalized w coord
for(int i=0; i<3; i++) {
nvec[i] += (1.0 * value[i][3]);
}
return nvec;
}
//------------------------------------------------------------------------------
// Other helper functions
//------------------------------------------------------------------------------
//! init identity matrix
template<class Scalar>
inline void ntlMatrix4x4<Scalar>::initId()
{
(*this) = (Scalar)(0.0);
value[0][0] =
value[1][1] =
value[2][2] =
value[3][3] = (Scalar)(1.0);
}
//! init rotation matrix
template<class Scalar>
inline void ntlMatrix4x4<Scalar>::initTranslation(Scalar x, Scalar y, Scalar z)
{
//(*this) = (Scalar)(0.0);
this->initId();
value[0][3] = x;
value[1][3] = y;
value[2][3] = z;
}
//! init rotation matrix
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initRotationX(Scalar rot)
{
double drot = (double)(rot/360.0*2.0*M_PI);
//? while(drot < 0.0) drot += (M_PI*2.0);
this->initId();
value[1][1] = (Scalar) cos(drot);
value[1][2] = (Scalar) sin(drot);
value[2][1] = (Scalar)(-sin(drot));
value[2][2] = (Scalar) cos(drot);
}
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initRotationY(Scalar rot)
{
double drot = (double)(rot/360.0*2.0*M_PI);
//? while(drot < 0.0) drot += (M_PI*2.0);
this->initId();
value[0][0] = (Scalar) cos(drot);
value[0][2] = (Scalar)(-sin(drot));
value[2][0] = (Scalar) sin(drot);
value[2][2] = (Scalar) cos(drot);
}
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initRotationZ(Scalar rot)
{
double drot = (double)(rot/360.0*2.0*M_PI);
//? while(drot < 0.0) drot += (M_PI*2.0);
this->initId();
value[0][0] = (Scalar) cos(drot);
value[0][1] = (Scalar) sin(drot);
value[1][0] = (Scalar)(-sin(drot));
value[1][1] = (Scalar) cos(drot);
}
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initRotationXYZ( Scalar rotx, Scalar roty, Scalar rotz)
{
ntlMatrix4x4<Scalar> val;
ntlMatrix4x4<Scalar> rot;
this->initId();
// org
/*rot.initRotationX(rotx);
(*this) *= rot;
rot.initRotationY(roty);
(*this) *= rot;
rot.initRotationZ(rotz);
(*this) *= rot;
// org */
// blender
rot.initRotationZ(rotz);
(*this) *= rot;
rot.initRotationY(roty);
(*this) *= rot;
rot.initRotationX(rotx);
(*this) *= rot;
// blender */
}
//! init scaling matrix
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initScaling(Scalar scale)
{
this->initId();
value[0][0] = scale;
value[1][1] = scale;
value[2][2] = scale;
}
//! init scaling matrix
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initScaling(Scalar x, Scalar y, Scalar z)
{
this->initId();
value[0][0] = x;
value[1][1] = y;
value[2][2] = z;
}
//! from 16 value array (init id if all 0)
template<class Scalar>
inline void
ntlMatrix4x4<Scalar>::initArrayCheck(Scalar *array)
{
bool allZero = true;
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
value[i][j] = array[i*4+j];
if(array[i*4+j]!=0.0) allZero=false;
}
}
if(allZero) this->initId();
}
//! decompose matrix
template<class Scalar>
void
ntlMatrix4x4<Scalar>::decompose(ntlVector3Dim<Scalar> &trans,ntlVector3Dim<Scalar> &scale,ntlVector3Dim<Scalar> &rot,ntlVector3Dim<Scalar> &shear) {
ntlVec3Gfx row[3],temp;
for(int i = 0; i < 3; i++) {
trans[i] = this->value[3][i];
}
for(int i = 0; i < 3; i++) {
row[i][0] = this->value[i][0];
row[i][1] = this->value[i][1];
row[i][2] = this->value[i][2];
}
scale[0] = norm(row[0]);
normalize (row[0]);
shear[0] = dot(row[0], row[1]);
row[1][0] = row[1][0] - shear[0]*row[0][0];
row[1][1] = row[1][1] - shear[0]*row[0][1];
row[1][2] = row[1][2] - shear[0]*row[0][2];
scale[1] = norm(row[1]);
normalize (row[1]);
if(scale[1] != 0.0)
shear[0] /= scale[1];
shear[1] = dot(row[0], row[2]);
row[2][0] = row[2][0] - shear[1]*row[0][0];
row[2][1] = row[2][1] - shear[1]*row[0][1];
row[2][2] = row[2][2] - shear[1]*row[0][2];
shear[2] = dot(row[1], row[2]);
row[2][0] = row[2][0] - shear[2]*row[1][0];
row[2][1] = row[2][1] - shear[2]*row[1][1];
row[2][2] = row[2][2] - shear[2]*row[1][2];
scale[2] = norm(row[2]);
normalize (row[2]);
if(scale[2] != 0.0) {
shear[1] /= scale[2];
shear[2] /= scale[2];
}
temp = cross(row[1], row[2]);
if(dot(row[0], temp) < 0.0) {
for(int i = 0; i < 3; i++) {
scale[i] *= -1.0;
row[i][0] *= -1.0;
row[i][1] *= -1.0;
row[i][2] *= -1.0;
}
}
if(row[0][2] < -1.0) row[0][2] = -1.0;
if(row[0][2] > +1.0) row[0][2] = +1.0;
rot[1] = asin(-row[0][2]);
if(fabs(cos(rot[1])) > VECTOR_EPSILON) {
rot[0] = atan2 (row[1][2], row[2][2]);
rot[2] = atan2 (row[0][1], row[0][0]);
}
else {
rot[0] = atan2 (row[1][0], row[1][1]);
rot[2] = 0.0;
}
rot[0] = (180.0/M_PI)*rot[0];
rot[1] = (180.0/M_PI)*rot[1];
rot[2] = (180.0/M_PI)*rot[2];
}
#define NTL_MATRICES_H
#endif