blender/intern/cycles/device/device_cpu.cpp
Thomas Dinges 866c7fb6e6 Cycles: Add an AVX2 CPU kernel.
This kernel is compiled with AVX2, FMA3, and BMI compiler flags. At the moment only Intel Haswell benefits from this, but future AMD CPUs will have these instructions as well.

Makes rendering on Haswell CPUs a few percent faster, only benchmarked with clang on OS X though.

Part of my GSoC 2014.
2014-06-13 22:26:20 +02:00

555 lines
15 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#include <stdlib.h>
#include <string.h>
#include "device.h"
#include "device_intern.h"
#include "kernel.h"
#include "kernel_compat_cpu.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "osl_shader.h"
#include "osl_globals.h"
#include "buffers.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_opengl.h"
#include "util_progress.h"
#include "util_system.h"
#include "util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice : public Device
{
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
CPUDevice(DeviceInfo& info, Stats &stats, bool background)
: Device(info, stats, background)
{
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
/* do now to avoid thread issues */
system_cpu_support_sse2();
system_cpu_support_sse3();
system_cpu_support_sse41();
system_cpu_support_avx();
system_cpu_support_avx2();
}
~CPUDevice()
{
task_pool.stop();
}
void mem_alloc(device_memory& mem, MemoryType type)
{
mem.device_pointer = mem.data_pointer;
stats.mem_alloc(mem.memory_size());
}
void mem_copy_to(device_memory& mem)
{
/* no-op */
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
mem.device_pointer = 0;
stats.mem_free(mem.memory_size());
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(const char *name, device_memory& mem, InterpolationType interpolation, bool periodic)
{
kernel_tex_copy(&kernel_globals, name, mem.data_pointer, mem.data_width, mem.data_height, mem.data_depth, interpolation);
mem.device_pointer = mem.data_pointer;
stats.mem_alloc(mem.memory_size());
}
void tex_free(device_memory& mem)
{
mem.device_pointer = 0;
stats.mem_free(mem.memory_size());
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE)
thread_path_trace(*task);
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
RenderTile tile;
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_avx2_path_trace(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_avx_path_trace(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_sse41_path_trace(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_sse3_path_trace(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_sse2_path_trace(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
else
#endif
{
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_path_trace(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_avx2_convert_to_half_float(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_avx_convert_to_half_float(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_sse41_convert_to_half_float(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_sse3_convert_to_half_float(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_sse2_convert_to_half_float(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
{
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_convert_to_half_float(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
else {
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_avx2_convert_to_byte(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_avx_convert_to_byte(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_sse41_convert_to_byte(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_sse3_convert_to_byte(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_sse2_convert_to_byte(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else
#endif
{
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_convert_to_byte(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
for(int sample = 0; sample < task.num_samples; sample++)
kernel_cpu_avx2_shader(&kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x, sample);
if(task.get_cancel() || task_pool.canceled())
break;
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
for(int sample = 0; sample < task.num_samples; sample++)
kernel_cpu_avx_shader(&kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x, sample);
if(task.get_cancel() || task_pool.canceled())
break;
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
for(int sample = 0; sample < task.num_samples; sample++)
kernel_cpu_sse41_shader(&kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x, sample);
if(task.get_cancel() || task_pool.canceled())
break;
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
for(int sample = 0; sample < task.num_samples; sample++)
kernel_cpu_sse3_shader(&kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x, sample);
if(task.get_cancel() || task_pool.canceled())
break;
}
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
for(int sample = 0; sample < task.num_samples; sample++)
kernel_cpu_sse2_shader(&kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x, sample);
if(task.get_cancel() || task_pool.canceled())
break;
}
}
else
#endif
{
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
for(int sample = 0; sample < task.num_samples; sample++)
kernel_cpu_shader(&kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x, sample);
if(task.get_cancel() || task_pool.canceled())
break;
}
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, TaskScheduler::num_threads(), 256);
else
task.split(tasks, TaskScheduler::num_threads());
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
};
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
CCL_NAMESPACE_END