blender/intern/opennl/superlu/ssp_blas2.c
Brecht Van Lommel 4f1c674ee0 Added SuperLU 3.0:
http://crd.lbl.gov/~xiaoye/SuperLU/

This is a library to solve sparse matrix systems (type A*x=B). It is able
to solve large systems very FAST. Only the necessary parts of the library
are included to limit file size and compilation time. This means the example
files, fortran interface, test files, matlab interface, cblas library,
complex number part and build system have been left out. All (gcc) warnings
have been fixed too.

This library will be used for LSCM UV unwrapping. With this library, LSCM
unwrapping can be calculated in a split second, making the unwrapping proces
much more interactive.

Added OpenNL (Open Numerical Libary):
http://www.loria.fr/~levy/OpenNL/

OpenNL is a library to easily construct and solve sparse linear systems. We
use a stripped down version, as an interface to SuperLU.

This library was kindly given to use by Bruno Levy.
2004-07-13 11:42:13 +00:00

470 lines
13 KiB
C

/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
* File name: ssp_blas2.c
* Purpose: Sparse BLAS 2, using some dense BLAS 2 operations.
*/
#include "ssp_defs.h"
/*
* Function prototypes
*/
void susolve(int, int, float*, float*);
void slsolve(int, int, float*, float*);
void smatvec(int, int, int, float*, float*, float*);
int strsv_(char*, char*, char*, int*, float*, int*, float*, int*);
int
sp_strsv(char *uplo, char *trans, char *diag, SuperMatrix *L,
SuperMatrix *U, float *x, SuperLUStat_t *stat, int *info)
{
/*
* Purpose
* =======
*
* sp_strsv() solves one of the systems of equations
* A*x = b, or A'*x = b,
* where b and x are n element vectors and A is a sparse unit , or
* non-unit, upper or lower triangular matrix.
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*
* Parameters
* ==========
*
* uplo - (input) char*
* On entry, uplo specifies whether the matrix is an upper or
* lower triangular matrix as follows:
* uplo = 'U' or 'u' A is an upper triangular matrix.
* uplo = 'L' or 'l' A is a lower triangular matrix.
*
* trans - (input) char*
* On entry, trans specifies the equations to be solved as
* follows:
* trans = 'N' or 'n' A*x = b.
* trans = 'T' or 't' A'*x = b.
* trans = 'C' or 'c' A'*x = b.
*
* diag - (input) char*
* On entry, diag specifies whether or not A is unit
* triangular as follows:
* diag = 'U' or 'u' A is assumed to be unit triangular.
* diag = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* L - (input) SuperMatrix*
* The factor L from the factorization Pr*A*Pc=L*U. Use
* compressed row subscripts storage for supernodes,
* i.e., L has types: Stype = SC, Dtype = SLU_S, Mtype = TRLU.
*
* U - (input) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U.
* U has types: Stype = NC, Dtype = SLU_S, Mtype = TRU.
*
* x - (input/output) float*
* Before entry, the incremented array X must contain the n
* element right-hand side vector b. On exit, X is overwritten
* with the solution vector x.
*
* info - (output) int*
* If *info = -i, the i-th argument had an illegal value.
*
*/
#ifdef _CRAY
_fcd ftcs1 = _cptofcd("L", strlen("L")),
ftcs2 = _cptofcd("N", strlen("N")),
ftcs3 = _cptofcd("U", strlen("U"));
#endif
SCformat *Lstore;
NCformat *Ustore;
float *Lval, *Uval;
int incx = 1;
int nrow;
int fsupc, nsupr, nsupc, luptr, istart, irow;
int i, k, iptr, jcol;
float *work;
flops_t solve_ops;
/* Test the input parameters */
*info = 0;
if ( !lsame_(uplo,"L") && !lsame_(uplo, "U") ) *info = -1;
else if ( !lsame_(trans, "N") && !lsame_(trans, "T") &&
!lsame_(trans, "C")) *info = -2;
else if ( !lsame_(diag, "U") && !lsame_(diag, "N") ) *info = -3;
else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -4;
else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -5;
if ( *info ) {
i = -(*info);
xerbla_("sp_strsv", &i);
return 0;
}
Lstore = L->Store;
Lval = Lstore->nzval;
Ustore = U->Store;
Uval = Ustore->nzval;
solve_ops = 0;
if ( !(work = floatCalloc(L->nrow)) )
ABORT("Malloc fails for work in sp_strsv().");
if ( lsame_(trans, "N") ) { /* Form x := inv(A)*x. */
if ( lsame_(uplo, "L") ) {
/* Form x := inv(L)*x */
if ( L->nrow == 0 ) return 0; /* Quick return */
for (k = 0; k <= Lstore->nsuper; k++) {
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
nsupc = L_FST_SUPC(k+1) - fsupc;
luptr = L_NZ_START(fsupc);
nrow = nsupr - nsupc;
solve_ops += nsupc * (nsupc - 1);
solve_ops += 2 * nrow * nsupc;
if ( nsupc == 1 ) {
for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); ++iptr) {
irow = L_SUB(iptr);
++luptr;
x[irow] -= x[fsupc] * Lval[luptr];
}
} else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
SGEMV(ftcs2, &nrow, &nsupc, &alpha, &Lval[luptr+nsupc],
&nsupr, &x[fsupc], &incx, &beta, &work[0], &incy);
#else
strsv_("L", "N", "U", &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
sgemv_("N", &nrow, &nsupc, &alpha, &Lval[luptr+nsupc],
&nsupr, &x[fsupc], &incx, &beta, &work[0], &incy);
#endif
#else
slsolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc]);
smatvec ( nsupr, nsupr-nsupc, nsupc, &Lval[luptr+nsupc],
&x[fsupc], &work[0] );
#endif
iptr = istart + nsupc;
for (i = 0; i < nrow; ++i, ++iptr) {
irow = L_SUB(iptr);
x[irow] -= work[i]; /* Scatter */
work[i] = 0.0;
}
}
} /* for k ... */
} else {
/* Form x := inv(U)*x */
if ( U->nrow == 0 ) return 0; /* Quick return */
for (k = Lstore->nsuper; k >= 0; k--) {
fsupc = L_FST_SUPC(k);
nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc);
nsupc = L_FST_SUPC(k+1) - fsupc;
luptr = L_NZ_START(fsupc);
solve_ops += nsupc * (nsupc + 1);
if ( nsupc == 1 ) {
x[fsupc] /= Lval[luptr];
for (i = U_NZ_START(fsupc); i < U_NZ_START(fsupc+1); ++i) {
irow = U_SUB(i);
x[irow] -= x[fsupc] * Uval[i];
}
} else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV(ftcs3, ftcs2, ftcs2, &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
#else
strsv_("U", "N", "N", &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
#endif
#else
susolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc] );
#endif
for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) {
solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1);
i++) {
irow = U_SUB(i);
x[irow] -= x[jcol] * Uval[i];
}
}
}
} /* for k ... */
}
} else { /* Form x := inv(A')*x */
if ( lsame_(uplo, "L") ) {
/* Form x := inv(L')*x */
if ( L->nrow == 0 ) return 0; /* Quick return */
for (k = Lstore->nsuper; k >= 0; --k) {
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
nsupc = L_FST_SUPC(k+1) - fsupc;
luptr = L_NZ_START(fsupc);
solve_ops += 2 * (nsupr - nsupc) * nsupc;
for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) {
iptr = istart + nsupc;
for (i = L_NZ_START(jcol) + nsupc;
i < L_NZ_START(jcol+1); i++) {
irow = L_SUB(iptr);
x[jcol] -= x[irow] * Lval[i];
iptr++;
}
}
if ( nsupc > 1 ) {
solve_ops += nsupc * (nsupc - 1);
#ifdef _CRAY
ftcs1 = _cptofcd("L", strlen("L"));
ftcs2 = _cptofcd("T", strlen("T"));
ftcs3 = _cptofcd("U", strlen("U"));
STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
#else
strsv_("L", "T", "U", &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
#endif
}
}
} else {
/* Form x := inv(U')*x */
if ( U->nrow == 0 ) return 0; /* Quick return */
for (k = 0; k <= Lstore->nsuper; k++) {
fsupc = L_FST_SUPC(k);
nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc);
nsupc = L_FST_SUPC(k+1) - fsupc;
luptr = L_NZ_START(fsupc);
for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) {
solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++) {
irow = U_SUB(i);
x[jcol] -= x[irow] * Uval[i];
}
}
solve_ops += nsupc * (nsupc + 1);
if ( nsupc == 1 ) {
x[fsupc] /= Lval[luptr];
} else {
#ifdef _CRAY
ftcs1 = _cptofcd("U", strlen("U"));
ftcs2 = _cptofcd("T", strlen("T"));
ftcs3 = _cptofcd("N", strlen("N"));
STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
#else
strsv_("U", "T", "N", &nsupc, &Lval[luptr], &nsupr,
&x[fsupc], &incx);
#endif
}
} /* for k ... */
}
}
stat->ops[SOLVE] += solve_ops;
SUPERLU_FREE(work);
return 0;
}
int
sp_sgemv(char *trans, float alpha, SuperMatrix *A, float *x,
int incx, float beta, float *y, int incy)
{
/* Purpose
=======
sp_sgemv() performs one of the matrix-vector operations
y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is a
sparse A->nrow by A->ncol matrix.
Parameters
==========
TRANS - (input) char*
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
ALPHA - (input) float
On entry, ALPHA specifies the scalar alpha.
A - (input) SuperMatrix*
Matrix A with a sparse format, of dimension (A->nrow, A->ncol).
Currently, the type of A can be:
Stype = NC or NCP; Dtype = SLU_S; Mtype = GE.
In the future, more general A can be handled.
X - (input) float*, array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
INCX - (input) int
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
BETA - (input) float
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Y - (output) float*, array of DIMENSION at least
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
INCY - (input) int
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
==== Sparse Level 2 Blas routine.
*/
/* Local variables */
NCformat *Astore;
float *Aval;
int info;
float temp;
int lenx, leny, i, j, irow;
int iy, jx, jy, kx, ky;
int notran;
notran = lsame_(trans, "N");
Astore = A->Store;
Aval = Astore->nzval;
/* Test the input parameters */
info = 0;
if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C")) info = 1;
else if ( A->nrow < 0 || A->ncol < 0 ) info = 3;
else if (incx == 0) info = 5;
else if (incy == 0) info = 8;
if (info != 0) {
xerbla_("sp_sgemv ", &info);
return 0;
}
/* Quick return if possible. */
if (A->nrow == 0 || A->ncol == 0 || (alpha == 0. && beta == 1.))
return 0;
/* Set LENX and LENY, the lengths of the vectors x and y, and set
up the start points in X and Y. */
if (lsame_(trans, "N")) {
lenx = A->ncol;
leny = A->nrow;
} else {
lenx = A->nrow;
leny = A->ncol;
}
if (incx > 0) kx = 0;
else kx = - (lenx - 1) * incx;
if (incy > 0) ky = 0;
else ky = - (leny - 1) * incy;
/* Start the operations. In this version the elements of A are
accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if (beta != 1.) {
if (incy == 1) {
if (beta == 0.)
for (i = 0; i < leny; ++i) y[i] = 0.;
else
for (i = 0; i < leny; ++i) y[i] = beta * y[i];
} else {
iy = ky;
if (beta == 0.)
for (i = 0; i < leny; ++i) {
y[iy] = 0.;
iy += incy;
}
else
for (i = 0; i < leny; ++i) {
y[iy] = beta * y[iy];
iy += incy;
}
}
}
if (alpha == 0.) return 0;
if ( notran ) {
/* Form y := alpha*A*x + y. */
jx = kx;
if (incy == 1) {
for (j = 0; j < A->ncol; ++j) {
if (x[jx] != 0.) {
temp = alpha * x[jx];
for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
irow = Astore->rowind[i];
y[irow] += temp * Aval[i];
}
}
jx += incx;
}
} else {
ABORT("Not implemented.");
}
} else {
/* Form y := alpha*A'*x + y. */
jy = ky;
if (incx == 1) {
for (j = 0; j < A->ncol; ++j) {
temp = 0.;
for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
irow = Astore->rowind[i];
temp += Aval[i] * x[irow];
}
y[jy] += alpha * temp;
jy += incy;
}
} else {
ABORT("Not implemented.");
}
}
return 0;
} /* sp_sgemv */