blender/intern/cycles/render/image.cpp

1085 lines
33 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/image.h"
#include "device/device.h"
#include "render/colorspace.h"
#include "render/scene.h"
#include "render/stats.h"
#include "util/util_foreach.h"
#include "util/util_image_impl.h"
#include "util/util_logging.h"
#include "util/util_path.h"
#include "util/util_progress.h"
#include "util/util_texture.h"
#include "util/util_unique_ptr.h"
#ifdef WITH_OSL
# include <OSL/oslexec.h>
#endif
CCL_NAMESPACE_BEGIN
namespace {
/* Some helpers to silence warning in templated function. */
bool isfinite(uchar /*value*/)
{
return true;
}
bool isfinite(half /*value*/)
{
return true;
}
bool isfinite(uint16_t /*value*/)
{
return true;
}
/* The lower three bits of a device texture slot number indicate its type.
* These functions convert the slot ids from ImageManager "images" ones
* to device ones and vice verse.
*/
int type_index_to_flattened_slot(int slot, ImageDataType type)
{
return (slot << IMAGE_DATA_TYPE_SHIFT) | (type);
}
int flattened_slot_to_type_index(int flat_slot, ImageDataType *type)
{
*type = (ImageDataType)(flat_slot & IMAGE_DATA_TYPE_MASK);
return flat_slot >> IMAGE_DATA_TYPE_SHIFT;
}
const char *name_from_type(ImageDataType type)
{
switch (type) {
case IMAGE_DATA_TYPE_FLOAT4:
return "float4";
case IMAGE_DATA_TYPE_BYTE4:
return "byte4";
case IMAGE_DATA_TYPE_HALF4:
return "half4";
case IMAGE_DATA_TYPE_FLOAT:
return "float";
case IMAGE_DATA_TYPE_BYTE:
return "byte";
case IMAGE_DATA_TYPE_HALF:
return "half";
case IMAGE_DATA_TYPE_USHORT4:
return "ushort4";
case IMAGE_DATA_TYPE_USHORT:
return "ushort";
case IMAGE_DATA_NUM_TYPES:
assert(!"System enumerator type, should never be used");
return "";
}
assert(!"Unhandled image data type");
return "";
}
} // namespace
ImageManager::ImageManager(const DeviceInfo &info)
{
need_update = true;
osl_texture_system = NULL;
animation_frame = 0;
/* Set image limits */
max_num_images = TEX_NUM_MAX;
has_half_images = info.has_half_images;
for (size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
tex_num_images[type] = 0;
}
}
ImageManager::~ImageManager()
{
for (size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++)
assert(!images[type][slot]);
}
}
void ImageManager::set_osl_texture_system(void *texture_system)
{
osl_texture_system = texture_system;
}
bool ImageManager::set_animation_frame_update(int frame)
{
if (frame != animation_frame) {
animation_frame = frame;
for (size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++) {
if (images[type][slot] && images[type][slot]->animated)
return true;
}
}
}
return false;
}
device_memory *ImageManager::image_memory(int flat_slot)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *img = images[type][slot];
return img->mem;
}
bool ImageManager::get_image_metadata(int flat_slot, ImageMetaData &metadata)
{
if (flat_slot == -1) {
return false;
}
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *img = images[type][slot];
if (img) {
metadata = img->metadata;
return true;
}
return false;
}
void ImageManager::metadata_detect_colorspace(ImageMetaData &metadata, const char *file_format)
{
/* Convert used specified color spaces to one we know how to handle. */
metadata.colorspace = ColorSpaceManager::detect_known_colorspace(
metadata.colorspace, file_format, metadata.is_float || metadata.is_half);
if (metadata.colorspace == u_colorspace_raw) {
/* Nothing to do. */
}
else if (metadata.colorspace == u_colorspace_srgb) {
/* Keep sRGB colorspace stored as sRGB, to save memory and/or loading time
* for the common case of 8bit sRGB images like PNG. */
metadata.compress_as_srgb = true;
}
else {
/* Always compress non-raw 8bit images as scene linear + sRGB, as a
* heuristic to keep memory usage the same without too much data loss
* due to quantization in common cases. */
metadata.compress_as_srgb = (metadata.type == IMAGE_DATA_TYPE_BYTE ||
metadata.type == IMAGE_DATA_TYPE_BYTE4);
/* If colorspace conversion needed, use half instead of short so we can
* represent HDR values that might result from conversion. */
if (metadata.type == IMAGE_DATA_TYPE_USHORT) {
metadata.type = IMAGE_DATA_TYPE_HALF;
}
else if (metadata.type == IMAGE_DATA_TYPE_USHORT4) {
metadata.type = IMAGE_DATA_TYPE_HALF4;
}
}
}
bool ImageManager::get_image_metadata(const string &filename,
void *builtin_data,
ustring colorspace,
ImageMetaData &metadata)
{
metadata = ImageMetaData();
metadata.colorspace = colorspace;
if (builtin_data) {
if (builtin_image_info_cb) {
builtin_image_info_cb(filename, builtin_data, metadata);
}
else {
return false;
}
if (metadata.is_float) {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_FLOAT4 : IMAGE_DATA_TYPE_FLOAT;
}
else {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_BYTE4 : IMAGE_DATA_TYPE_BYTE;
}
metadata_detect_colorspace(metadata, "");
return true;
}
/* Perform preliminary checks, with meaningful logging. */
if (!path_exists(filename)) {
VLOG(1) << "File '" << filename << "' does not exist.";
return false;
}
if (path_is_directory(filename)) {
VLOG(1) << "File '" << filename << "' is a directory, can't use as image.";
return false;
}
unique_ptr<ImageInput> in(ImageInput::create(filename));
if (!in) {
return false;
}
ImageSpec spec;
if (!in->open(filename, spec)) {
return false;
}
metadata.width = spec.width;
metadata.height = spec.height;
metadata.depth = spec.depth;
metadata.compress_as_srgb = false;
/* Check the main format, and channel formats. */
size_t channel_size = spec.format.basesize();
if (spec.format.is_floating_point()) {
metadata.is_float = true;
}
for (size_t channel = 0; channel < spec.channelformats.size(); channel++) {
channel_size = max(channel_size, spec.channelformats[channel].basesize());
if (spec.channelformats[channel].is_floating_point()) {
metadata.is_float = true;
}
}
/* check if it's half float */
if (spec.format == TypeDesc::HALF) {
metadata.is_half = true;
}
/* set type and channels */
metadata.channels = spec.nchannels;
if (metadata.is_half) {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_HALF4 : IMAGE_DATA_TYPE_HALF;
}
else if (metadata.is_float) {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_FLOAT4 : IMAGE_DATA_TYPE_FLOAT;
}
else if (spec.format == TypeDesc::USHORT) {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_USHORT4 : IMAGE_DATA_TYPE_USHORT;
}
else {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_BYTE4 : IMAGE_DATA_TYPE_BYTE;
}
metadata_detect_colorspace(metadata, in->format_name());
in->close();
return true;
}
static bool image_equals(ImageManager::Image *image,
const string &filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha,
ustring colorspace)
{
return image->filename == filename && image->builtin_data == builtin_data &&
image->interpolation == interpolation && image->extension == extension &&
image->use_alpha == use_alpha && image->colorspace == colorspace;
}
int ImageManager::add_image(const string &filename,
void *builtin_data,
bool animated,
float frame,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha,
ustring colorspace,
ImageMetaData &metadata)
{
Image *img;
size_t slot;
get_image_metadata(filename, builtin_data, colorspace, metadata);
ImageDataType type = metadata.type;
thread_scoped_lock device_lock(device_mutex);
/* No half textures on OpenCL, use full float instead. */
if (!has_half_images) {
if (type == IMAGE_DATA_TYPE_HALF4) {
type = IMAGE_DATA_TYPE_FLOAT4;
}
else if (type == IMAGE_DATA_TYPE_HALF) {
type = IMAGE_DATA_TYPE_FLOAT;
}
}
/* Fnd existing image. */
for (slot = 0; slot < images[type].size(); slot++) {
img = images[type][slot];
if (img && image_equals(
img, filename, builtin_data, interpolation, extension, use_alpha, colorspace)) {
if (img->frame != frame) {
img->frame = frame;
img->need_load = true;
}
if (img->use_alpha != use_alpha) {
img->use_alpha = use_alpha;
img->need_load = true;
}
if (img->colorspace != colorspace) {
img->colorspace = colorspace;
img->need_load = true;
}
if (!(img->metadata == metadata)) {
img->metadata = metadata;
img->need_load = true;
}
img->users++;
return type_index_to_flattened_slot(slot, type);
}
}
/* Find free slot. */
for (slot = 0; slot < images[type].size(); slot++) {
if (!images[type][slot])
break;
}
/* Count if we're over the limit.
* Very unlikely, since max_num_images is insanely big. But better safe
* than sorry.
*/
int tex_count = 0;
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
tex_count += tex_num_images[type];
}
if (tex_count > max_num_images) {
printf(
"ImageManager::add_image: Reached image limit (%d), "
"skipping '%s'\n",
max_num_images,
filename.c_str());
return -1;
}
if (slot == images[type].size()) {
images[type].resize(images[type].size() + 1);
}
/* Add new image. */
img = new Image();
img->filename = filename;
img->builtin_data = builtin_data;
img->metadata = metadata;
img->need_load = true;
img->animated = animated;
img->frame = frame;
img->interpolation = interpolation;
img->extension = extension;
img->users = 1;
img->use_alpha = use_alpha;
img->colorspace = colorspace;
img->mem = NULL;
images[type][slot] = img;
++tex_num_images[type];
need_update = true;
return type_index_to_flattened_slot(slot, type);
}
void ImageManager::remove_image(int flat_slot)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image && image->users >= 1);
/* decrement user count */
image->users--;
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if (image->users == 0)
need_update = true;
}
void ImageManager::remove_image(const string &filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha,
ustring colorspace)
{
size_t slot;
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (slot = 0; slot < images[type].size(); slot++) {
if (images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension,
use_alpha,
colorspace)) {
remove_image(type_index_to_flattened_slot(slot, (ImageDataType)type));
return;
}
}
}
}
/* TODO(sergey): Deduplicate with the iteration above, but make it pretty,
* without bunch of arguments passing around making code readability even
* more cluttered.
*/
void ImageManager::tag_reload_image(const string &filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha,
ustring colorspace)
{
for (size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++) {
if (images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension,
use_alpha,
colorspace)) {
images[type][slot]->need_load = true;
break;
}
}
}
}
bool ImageManager::file_load_image_generic(Image *img, unique_ptr<ImageInput> *in)
{
if (img->filename == "")
return false;
if (!img->builtin_data) {
/* NOTE: Error logging is done in meta data acquisition. */
if (!path_exists(img->filename) || path_is_directory(img->filename)) {
return false;
}
/* load image from file through OIIO */
*in = unique_ptr<ImageInput>(ImageInput::create(img->filename));
if (!*in)
return false;
ImageSpec spec = ImageSpec();
ImageSpec config = ImageSpec();
if (img->use_alpha == false)
config.attribute("oiio:UnassociatedAlpha", 1);
if (!(*in)->open(img->filename, spec, config)) {
return false;
}
}
else {
/* load image using builtin images callbacks */
if (!builtin_image_info_cb || !builtin_image_pixels_cb)
return false;
}
/* we only handle certain number of components */
if (!(img->metadata.channels >= 1 && img->metadata.channels <= 4)) {
if (*in) {
(*in)->close();
}
return false;
}
return true;
}
template<TypeDesc::BASETYPE FileFormat, typename StorageType, typename DeviceType>
bool ImageManager::file_load_image(Image *img,
ImageDataType type,
int texture_limit,
device_vector<DeviceType> &tex_img)
{
unique_ptr<ImageInput> in = NULL;
if (!file_load_image_generic(img, &in)) {
return false;
}
/* Get metadata. */
int width = img->metadata.width;
int height = img->metadata.height;
int depth = img->metadata.depth;
int components = img->metadata.channels;
/* Read pixels. */
vector<StorageType> pixels_storage;
StorageType *pixels;
const size_t max_size = max(max(width, height), depth);
if (max_size == 0) {
/* Don't bother with empty images. */
return false;
}
/* Allocate memory as needed, may be smaller to resize down. */
if (texture_limit > 0 && max_size > texture_limit) {
pixels_storage.resize(((size_t)width) * height * depth * 4);
pixels = &pixels_storage[0];
}
else {
thread_scoped_lock device_lock(device_mutex);
pixels = (StorageType *)tex_img.alloc(width, height, depth);
}
if (pixels == NULL) {
/* Could be that we've run out of memory. */
return false;
}
bool cmyk = false;
const size_t num_pixels = ((size_t)width) * height * depth;
if (in) {
/* Read pixels through OpenImageIO. */
StorageType *readpixels = pixels;
vector<StorageType> tmppixels;
if (components > 4) {
tmppixels.resize(((size_t)width) * height * components);
readpixels = &tmppixels[0];
}
if (depth <= 1) {
size_t scanlinesize = ((size_t)width) * components * sizeof(StorageType);
in->read_image(FileFormat,
(uchar *)readpixels + (height - 1) * scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(FileFormat, (uchar *)readpixels);
}
if (components > 4) {
size_t dimensions = ((size_t)width) * height;
for (size_t i = dimensions - 1, pixel = 0; pixel < dimensions; pixel++, i--) {
pixels[i * 4 + 3] = tmppixels[i * components + 3];
pixels[i * 4 + 2] = tmppixels[i * components + 2];
pixels[i * 4 + 1] = tmppixels[i * components + 1];
pixels[i * 4 + 0] = tmppixels[i * components + 0];
}
tmppixels.clear();
}
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
in->close();
}
else {
/* Read pixels through callback. */
if (FileFormat == TypeDesc::FLOAT) {
builtin_image_float_pixels_cb(img->filename,
img->builtin_data,
(float *)&pixels[0],
num_pixels * components,
img->metadata.builtin_free_cache);
}
else if (FileFormat == TypeDesc::UINT8) {
builtin_image_pixels_cb(img->filename,
img->builtin_data,
(uchar *)&pixels[0],
num_pixels * components,
img->metadata.builtin_free_cache);
}
else {
/* TODO(dingto): Support half for ImBuf. */
}
}
/* The kernel can handle 1 and 4 channel images. Anything that is not a single
* channel image is converted to RGBA format. */
bool is_rgba = (type == IMAGE_DATA_TYPE_FLOAT4 || type == IMAGE_DATA_TYPE_HALF4 ||
type == IMAGE_DATA_TYPE_BYTE4 || type == IMAGE_DATA_TYPE_USHORT4);
if (is_rgba) {
const StorageType one = util_image_cast_from_float<StorageType>(1.0f);
if (cmyk) {
/* CMYK to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
float c = util_image_cast_to_float(pixels[i * 4 + 0]);
float m = util_image_cast_to_float(pixels[i * 4 + 1]);
float y = util_image_cast_to_float(pixels[i * 4 + 2]);
float k = util_image_cast_to_float(pixels[i * 4 + 3]);
pixels[i * 4 + 0] = util_image_cast_from_float<StorageType>((1.0f - c) * (1.0f - k));
pixels[i * 4 + 1] = util_image_cast_from_float<StorageType>((1.0f - m) * (1.0f - k));
pixels[i * 4 + 2] = util_image_cast_from_float<StorageType>((1.0f - y) * (1.0f - k));
pixels[i * 4 + 3] = one;
}
}
else if (components == 2) {
/* Grayscale + alpha to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = pixels[i * 2 + 1];
pixels[i * 4 + 2] = pixels[i * 2 + 0];
pixels[i * 4 + 1] = pixels[i * 2 + 0];
pixels[i * 4 + 0] = pixels[i * 2 + 0];
}
}
else if (components == 3) {
/* RGB to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = one;
pixels[i * 4 + 2] = pixels[i * 3 + 2];
pixels[i * 4 + 1] = pixels[i * 3 + 1];
pixels[i * 4 + 0] = pixels[i * 3 + 0];
}
}
else if (components == 1) {
/* Grayscale to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = one;
pixels[i * 4 + 2] = pixels[i];
pixels[i * 4 + 1] = pixels[i];
pixels[i * 4 + 0] = pixels[i];
}
}
/* Disable alpha if requested by the user. */
if (img->use_alpha == false) {
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = one;
}
}
if (img->metadata.colorspace != u_colorspace_raw &&
img->metadata.colorspace != u_colorspace_srgb) {
/* Convert to scene linear. */
ColorSpaceManager::to_scene_linear(
img->metadata.colorspace, pixels, width, height, depth, img->metadata.compress_as_srgb);
}
}
/* Make sure we don't have buggy values. */
if (FileFormat == TypeDesc::FLOAT) {
/* For RGBA buffers we put all channels to 0 if either of them is not
* finite. This way we avoid possible artifacts caused by fully changed
* hue. */
if (is_rgba) {
for (size_t i = 0; i < num_pixels; i += 4) {
StorageType *pixel = &pixels[i * 4];
if (!isfinite(pixel[0]) || !isfinite(pixel[1]) || !isfinite(pixel[2]) ||
!isfinite(pixel[3])) {
pixel[0] = 0;
pixel[1] = 0;
pixel[2] = 0;
pixel[3] = 0;
}
}
}
else {
for (size_t i = 0; i < num_pixels; ++i) {
StorageType *pixel = &pixels[i];
if (!isfinite(pixel[0])) {
pixel[0] = 0;
}
}
}
}
/* Scale image down if needed. */
if (pixels_storage.size() > 0) {
float scale_factor = 1.0f;
while (max_size * scale_factor > texture_limit) {
scale_factor *= 0.5f;
}
VLOG(1) << "Scaling image " << img->filename << " by a factor of " << scale_factor << ".";
vector<StorageType> scaled_pixels;
size_t scaled_width, scaled_height, scaled_depth;
util_image_resize_pixels(pixels_storage,
width,
height,
depth,
is_rgba ? 4 : 1,
scale_factor,
&scaled_pixels,
&scaled_width,
&scaled_height,
&scaled_depth);
StorageType *texture_pixels;
{
thread_scoped_lock device_lock(device_mutex);
texture_pixels = (StorageType *)tex_img.alloc(scaled_width, scaled_height, scaled_depth);
}
memcpy(texture_pixels, &scaled_pixels[0], scaled_pixels.size() * sizeof(StorageType));
}
return true;
}
void ImageManager::device_load_image(
Device *device, Scene *scene, ImageDataType type, int slot, Progress *progress)
{
if (progress->get_cancel())
return;
Image *img = images[type][slot];
if (osl_texture_system && !img->builtin_data)
return;
string filename = path_filename(images[type][slot]->filename);
progress->set_status("Updating Images", "Loading " + filename);
const int texture_limit = scene->params.texture_limit;
/* Slot assignment */
int flat_slot = type_index_to_flattened_slot(slot, type);
img->mem_name = string_printf("__tex_image_%s_%03d", name_from_type(type), flat_slot);
/* Free previous texture in slot. */
if (img->mem) {
thread_scoped_lock device_lock(device_mutex);
delete img->mem;
img->mem = NULL;
}
/* Create new texture. */
if (type == IMAGE_DATA_TYPE_FLOAT4) {
device_vector<float4> *tex_img = new device_vector<float4>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::FLOAT, float>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
float *pixels = (float *)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_FLOAT) {
device_vector<float> *tex_img = new device_vector<float>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::FLOAT, float>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
float *pixels = (float *)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_BYTE4) {
device_vector<uchar4> *tex_img = new device_vector<uchar4>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::UINT8, uchar>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uchar *pixels = (uchar *)tex_img->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_BYTE) {
device_vector<uchar> *tex_img = new device_vector<uchar>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::UINT8, uchar>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uchar *pixels = (uchar *)tex_img->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_HALF4) {
device_vector<half4> *tex_img = new device_vector<half4>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::HALF, half>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
half *pixels = (half *)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_USHORT) {
device_vector<uint16_t> *tex_img = new device_vector<uint16_t>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::USHORT, uint16_t>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uint16_t *pixels = (uint16_t *)tex_img->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 65535);
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_USHORT4) {
device_vector<ushort4> *tex_img = new device_vector<ushort4>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::USHORT, uint16_t>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uint16_t *pixels = (uint16_t *)tex_img->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 65535);
pixels[1] = (TEX_IMAGE_MISSING_G * 65535);
pixels[2] = (TEX_IMAGE_MISSING_B * 65535);
pixels[3] = (TEX_IMAGE_MISSING_A * 65535);
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if (type == IMAGE_DATA_TYPE_HALF) {
device_vector<half> *tex_img = new device_vector<half>(
device, img->mem_name.c_str(), MEM_TEXTURE);
if (!file_load_image<TypeDesc::HALF, half>(img, type, texture_limit, *tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
half *pixels = (half *)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
img->need_load = false;
}
void ImageManager::device_free_image(Device *, ImageDataType type, int slot)
{
Image *img = images[type][slot];
if (img) {
if (osl_texture_system && !img->builtin_data) {
#ifdef WITH_OSL
ustring filename(images[type][slot]->filename);
((OSL::TextureSystem *)osl_texture_system)->invalidate(filename);
#endif
}
if (img->mem) {
thread_scoped_lock device_lock(device_mutex);
delete img->mem;
}
delete img;
images[type][slot] = NULL;
--tex_num_images[type];
}
}
void ImageManager::device_update(Device *device, Scene *scene, Progress &progress)
{
if (!need_update) {
return;
}
TaskPool pool;
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++) {
if (!images[type][slot])
continue;
if (images[type][slot]->users == 0) {
device_free_image(device, (ImageDataType)type, slot);
}
else if (images[type][slot]->need_load) {
if (!osl_texture_system || images[type][slot]->builtin_data)
pool.push(function_bind(&ImageManager::device_load_image,
this,
device,
scene,
(ImageDataType)type,
slot,
&progress));
}
}
}
pool.wait_work();
need_update = false;
}
void ImageManager::device_update_slot(Device *device,
Scene *scene,
int flat_slot,
Progress *progress)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image != NULL);
if (image->users == 0) {
device_free_image(device, type, slot);
}
else if (image->need_load) {
if (!osl_texture_system || image->builtin_data)
device_load_image(device, scene, type, slot, progress);
}
}
void ImageManager::device_load_builtin(Device *device, Scene *scene, Progress &progress)
{
/* Load only builtin images, Blender needs this to load evaluated
* scene data from depsgraph before it is freed. */
if (!need_update) {
return;
}
TaskPool pool;
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++) {
if (!images[type][slot])
continue;
if (images[type][slot]->need_load) {
if (images[type][slot]->builtin_data) {
pool.push(function_bind(&ImageManager::device_load_image,
this,
device,
scene,
(ImageDataType)type,
slot,
&progress));
}
}
}
}
pool.wait_work();
}
void ImageManager::device_free_builtin(Device *device)
{
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++) {
if (images[type][slot] && images[type][slot]->builtin_data)
device_free_image(device, (ImageDataType)type, slot);
}
}
}
void ImageManager::device_free(Device *device)
{
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for (size_t slot = 0; slot < images[type].size(); slot++) {
device_free_image(device, (ImageDataType)type, slot);
}
images[type].clear();
}
}
void ImageManager::collect_statistics(RenderStats *stats)
{
for (int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
foreach (const Image *image, images[type]) {
stats->image.textures.add_entry(
NamedSizeEntry(path_filename(image->filename), image->mem->memory_size()));
}
}
}
CCL_NAMESPACE_END