blender/source/gameengine/Ketsji/KX_TrackToActuator.cpp
Jorge Bernal 1bf87fa26c BGE: TrackTo actuator: increasing up & track axis options
This is related to Task T34861 to increase up & track axis options for TrackTo actuator. I've just added it to differential to facilitate an easier review.

With the patch applied you can select X, Y and Z axis for the Up axis, and X, Y, Z, -X, -Y and -Z for the track axis.

Related to the implementation I have used the algorithm from Trackto constrain placed in constrain.c but adapted to be used with MOTO library.

The wiki docs are here (http://wiki.blender.org/index.php/User:Lordloki/Doc:2.6/Manual/Game_Engine/Logic/Actuators/Edit_Object#Trackto_Actuator).

Test file is here: {F97623}

I have also uploaded 2 screenshots showing the UI modifications to the TrackTo actuator:

{F91992} {F91990}

Reviewers: moguri, dfelinto

Reviewed By: moguri

CC: Genome36

Differential Revision: https://developer.blender.org/D565
2014-07-14 18:30:27 -07:00

431 lines
11 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Ketsji/KX_TrackToActuator.cpp
* \ingroup ketsji
*
* Replace the mesh for this actuator's parent
*/
/* m_trackflag is used to determine the forward tracking direction
* m_upflag for the up direction
* normal situation is +y for forward, +z for up */
#include "MT_Scalar.h"
#include "SCA_IActuator.h"
#include "KX_TrackToActuator.h"
#include "SCA_IScene.h"
#include "SCA_LogicManager.h"
#include <math.h>
#include <iostream>
#include "KX_GameObject.h"
#include "PyObjectPlus.h"
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_TrackToActuator::KX_TrackToActuator(SCA_IObject *gameobj,
SCA_IObject *ob,
int time,
bool allow3D,
int trackflag,
int upflag)
: SCA_IActuator(gameobj, KX_ACT_TRACKTO)
{
m_time = time;
m_allow3D = allow3D;
m_object = ob;
m_trackflag = trackflag;
m_upflag = upflag;
m_parentobj = 0;
if (m_object)
m_object->RegisterActuator(this);
{
// if the object is vertex parented, don't check parent orientation as the link is broken
if (!((KX_GameObject*)gameobj)->IsVertexParent()) {
m_parentobj = ((KX_GameObject*)gameobj)->GetParent(); // check if the object is parented
if (m_parentobj) {
// if so, store the initial local rotation
// this is needed to revert the effect of the parent inverse node (TBC)
m_parentlocalmat = m_parentobj->GetSGNode()->GetLocalOrientation();
// use registration mechanism rather than AddRef, it creates zombie objects
m_parentobj->RegisterActuator(this);
}
}
}
} /* End of constructor */
/* old function from Blender */
static MT_Matrix3x3 EulToMat3(float eul[3])
{
MT_Matrix3x3 mat;
float ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
ci = cos(eul[0]);
cj = cos(eul[1]);
ch = cos(eul[2]);
si = sin(eul[0]);
sj = sin(eul[1]);
sh = sin(eul[2]);
cc = ci*ch;
cs = ci*sh;
sc = si*ch;
ss = si*sh;
mat[0][0] = cj*ch;
mat[1][0] = sj*sc-cs;
mat[2][0] = sj*cc+ss;
mat[0][1] = cj*sh;
mat[1][1] = sj*ss+cc;
mat[2][1] = sj*cs-sc;
mat[0][2] = -sj;
mat[1][2] = cj*si;
mat[2][2] = cj*ci;
return mat;
}
/* old function from Blender */
static void Mat3ToEulOld(MT_Matrix3x3 mat, float eul[3])
{
const float cy = sqrtf(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1]);
if (cy > (float)(16.0f * FLT_EPSILON)) {
eul[0] = atan2f( mat[1][2], mat[2][2]);
eul[1] = atan2f(-mat[0][2], cy);
eul[2] = atan2f( mat[0][1], mat[0][0]);
}
else {
eul[0] = atan2f(-mat[2][1], mat[1][1]);
eul[1] = atan2f(-mat[0][2], cy);
eul[2] = 0.0;
}
}
/* old function from Blender */
static void compatible_eulFast(float *eul, float *oldrot)
{
float dx, dy, dz;
/* angular difference of 360 degrees */
dx = eul[0] - oldrot[0];
dy = eul[1] - oldrot[1];
dz = eul[2] - oldrot[2];
if (fabsf(dx) > (float)MT_PI) {
if (dx > 0.0f) eul[0] -= (float)MT_2_PI; else eul[0] += (float)MT_2_PI;
}
if (fabsf(dy) > (float)MT_PI) {
if (dy > 0.0f) eul[1] -= (float)MT_2_PI; else eul[1] += (float)MT_2_PI;
}
if (fabsf(dz) > (float)MT_PI) {
if (dz > 0.0f) eul[2] -= (float)MT_2_PI; else eul[2] += (float)MT_2_PI;
}
}
static MT_Matrix3x3 matrix3x3_interpol(MT_Matrix3x3 oldmat, MT_Matrix3x3 mat, int m_time)
{
float eul[3], oldeul[3];
Mat3ToEulOld(oldmat, oldeul);
Mat3ToEulOld(mat, eul);
compatible_eulFast(eul, oldeul);
eul[0] = (m_time * oldeul[0] + eul[0]) / (1.0f + m_time);
eul[1] = (m_time * oldeul[1] + eul[1]) / (1.0f + m_time);
eul[2] = (m_time * oldeul[2] + eul[2]) / (1.0f + m_time);
return EulToMat3(eul);
}
static float basis_cross(int n, int m)
{
switch (n - m) {
case 1:
case -2:
return 1.0f;
case -1:
case 2:
return -1.0f;
default:
return 0.0f;
}
}
/* vectomat function obtained from constrain.c and modified to work with MOTO library */
static MT_Matrix3x3 vectomat(MT_Vector3 vec, short axis, short upflag, short threedimup)
{
MT_Matrix3x3 mat;
MT_Vector3 y(MT_Scalar(0.0), MT_Scalar(1.0), MT_Scalar(0.0));
MT_Vector3 z(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(1.0)); /* world Z axis is the global up axis */
MT_Vector3 proj;
MT_Vector3 right;
MT_Scalar mul;
int right_index;
/* Normalized Vec vector*/
vec = vec.safe_normalized_vec(z);
/* if 2D doesn't move the up vector */
if (!threedimup){
vec.setValue(MT_Scalar(vec[0]), MT_Scalar(vec[1]), MT_Scalar(0.0));
vec = (vec - z.dot(vec)*z).safe_normalized_vec(z);
}
if (axis > 2)
axis -= 3;
else
vec = -vec;
/* project the up vector onto the plane specified by vec */
/* first z onto vec... */
mul = z.dot(vec) / vec.dot(vec);
proj = vec * mul;
/* then onto the plane */
proj = z - proj;
/* proj specifies the transformation of the up axis */
proj = proj.safe_normalized_vec(y);
/* Normalized cross product of vec and proj specifies transformation of the right axis */
right = proj.cross(vec);
right.normalize();
if (axis != upflag) {
right_index = 3 - axis - upflag;
/* account for up direction, track direction */
right = right * basis_cross(axis, upflag);
mat.setRow(right_index, right);
mat.setRow(upflag, proj);
mat.setRow(axis, vec);
mat = mat.inverse();
}
/* identity matrix - don't do anything if the two axes are the same */
else {
mat.setIdentity();
}
return mat;
}
KX_TrackToActuator::~KX_TrackToActuator()
{
if (m_object)
m_object->UnregisterActuator(this);
if (m_parentobj)
m_parentobj->UnregisterActuator(this);
} /* end of destructor */
void KX_TrackToActuator::ProcessReplica()
{
// the replica is tracking the same object => register it
if (m_object)
m_object->RegisterActuator(this);
if (m_parentobj)
m_parentobj->RegisterActuator(this);
SCA_IActuator::ProcessReplica();
}
bool KX_TrackToActuator::UnlinkObject(SCA_IObject* clientobj)
{
if (clientobj == m_object)
{
// this object is being deleted, we cannot continue to track it.
m_object = NULL;
return true;
}
if (clientobj == m_parentobj)
{
m_parentobj = NULL;
return true;
}
return false;
}
void KX_TrackToActuator::Relink(CTR_Map<CTR_HashedPtr, void*> *obj_map)
{
void **h_obj = (*obj_map)[m_object];
if (h_obj) {
if (m_object)
m_object->UnregisterActuator(this);
m_object = (SCA_IObject*)(*h_obj);
m_object->RegisterActuator(this);
}
void **h_parobj = (*obj_map)[m_parentobj];
if (h_parobj) {
if (m_parentobj)
m_parentobj->UnregisterActuator(this);
m_parentobj= (KX_GameObject*)(*h_parobj);
m_parentobj->RegisterActuator(this);
}
}
bool KX_TrackToActuator::Update(double curtime, bool frame)
{
bool result = false;
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
if (bNegativeEvent)
{
// do nothing on negative events
}
else if (m_object)
{
KX_GameObject* curobj = (KX_GameObject*) GetParent();
MT_Vector3 dir = curobj->NodeGetWorldPosition() - ((KX_GameObject*)m_object)->NodeGetWorldPosition();
MT_Matrix3x3 mat;
MT_Matrix3x3 oldmat;
mat = vectomat(dir, m_trackflag, m_upflag, m_allow3D);
oldmat = curobj->NodeGetWorldOrientation();
/* erwin should rewrite this! */
mat = matrix3x3_interpol(oldmat, mat, m_time);
/* check if the model is parented and calculate the child transform */
if (m_parentobj) {
MT_Point3 localpos;
localpos = curobj->GetSGNode()->GetLocalPosition();
// Get the inverse of the parent matrix
MT_Matrix3x3 parentmatinv;
parentmatinv = m_parentobj->NodeGetWorldOrientation().inverse();
// transform the local coordinate system into the parents system
mat = parentmatinv * mat;
// append the initial parent local rotation matrix
mat = m_parentlocalmat * mat;
// set the models tranformation properties
curobj->NodeSetLocalOrientation(mat);
curobj->NodeSetLocalPosition(localpos);
//curobj->UpdateTransform();
}
else {
curobj->NodeSetLocalOrientation(mat);
}
result = true;
}
return result;
}
#ifdef WITH_PYTHON
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_TrackToActuator::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_TrackToActuator",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,0,0,0,0,0,0,0,0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&SCA_IActuator::Type,
0,0,0,0,0,0,
py_base_new
};
PyMethodDef KX_TrackToActuator::Methods[] = {
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_TrackToActuator::Attributes[] = {
KX_PYATTRIBUTE_INT_RW("time",0,1000,true,KX_TrackToActuator,m_time),
KX_PYATTRIBUTE_BOOL_RW("use3D",KX_TrackToActuator,m_allow3D),
KX_PYATTRIBUTE_INT_RW("upAxis", 0, 2, true, KX_TrackToActuator,m_upflag),
KX_PYATTRIBUTE_INT_RW("trackAxis", 0, 5, true, KX_TrackToActuator,m_trackflag),
KX_PYATTRIBUTE_RW_FUNCTION("object", KX_TrackToActuator, pyattr_get_object, pyattr_set_object),
{ NULL } //Sentinel
};
PyObject *KX_TrackToActuator::pyattr_get_object(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_TrackToActuator* actuator = static_cast<KX_TrackToActuator*>(self);
if (!actuator->m_object)
Py_RETURN_NONE;
else
return actuator->m_object->GetProxy();
}
int KX_TrackToActuator::pyattr_set_object(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_TrackToActuator* actuator = static_cast<KX_TrackToActuator*>(self);
KX_GameObject *gameobj;
if (!ConvertPythonToGameObject(value, &gameobj, true, "actuator.object = value: KX_TrackToActuator"))
return PY_SET_ATTR_FAIL; // ConvertPythonToGameObject sets the error
if (actuator->m_object != NULL)
actuator->m_object->UnregisterActuator(actuator);
actuator->m_object = (SCA_IObject*) gameobj;
if (actuator->m_object)
actuator->m_object->RegisterActuator(actuator);
return PY_SET_ATTR_SUCCESS;
}
#endif // WITH_PYTHON
/* eof */