blender/intern/cycles/kernel/svm/svm_texture.h
Brecht Van Lommel c18712e868 Cycles: change __device and similar qualifiers to ccl_device in kernel code.
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.

Ref T37477.
2013-11-18 08:48:15 +01:00

228 lines
5.7 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* Voronoi Distances */
ccl_device float voronoi_distance(NodeDistanceMetric distance_metric, float3 d, float e)
{
#if 0
if(distance_metric == NODE_VORONOI_DISTANCE_SQUARED)
#endif
return dot(d, d);
#if 0
if(distance_metric == NODE_VORONOI_ACTUAL_DISTANCE)
return len(d);
if(distance_metric == NODE_VORONOI_MANHATTAN)
return fabsf(d.x) + fabsf(d.y) + fabsf(d.z);
if(distance_metric == NODE_VORONOI_CHEBYCHEV)
return fmaxf(fabsf(d.x), fmaxf(fabsf(d.y), fabsf(d.z)));
if(distance_metric == NODE_VORONOI_MINKOVSKY_H)
return sqrtf(fabsf(d.x)) + sqrtf(fabsf(d.y)) + sqrtf(fabsf(d.y));
if(distance_metric == NODE_VORONOI_MINKOVSKY_4)
return sqrtf(sqrtf(dot(d*d, d*d)));
if(distance_metric == NODE_VORONOI_MINKOVSKY)
return powf(powf(fabsf(d.x), e) + powf(fabsf(d.y), e) + powf(fabsf(d.z), e), 1.0f/e);
return 0.0f;
#endif
}
/* Voronoi / Worley like */
ccl_device_noinline float4 voronoi_Fn(float3 p, float e, int n1, int n2)
{
float da[4];
float3 pa[4];
NodeDistanceMetric distance_metric = NODE_VORONOI_DISTANCE_SQUARED;
/* returns distances in da and point coords in pa */
int xx, yy, zz, xi, yi, zi;
xi = floor_to_int(p.x);
yi = floor_to_int(p.y);
zi = floor_to_int(p.z);
da[0] = 1e10f;
da[1] = 1e10f;
da[2] = 1e10f;
da[3] = 1e10f;
pa[0] = make_float3(0.0f, 0.0f, 0.0f);
pa[1] = make_float3(0.0f, 0.0f, 0.0f);
pa[2] = make_float3(0.0f, 0.0f, 0.0f);
pa[3] = make_float3(0.0f, 0.0f, 0.0f);
for(xx = xi-1; xx <= xi+1; xx++) {
for(yy = yi-1; yy <= yi+1; yy++) {
for(zz = zi-1; zz <= zi+1; zz++) {
float3 ip = make_float3((float)xx, (float)yy, (float)zz);
float3 vp = cellnoise_color(ip);
float3 pd = p - (vp + ip);
float d = voronoi_distance(distance_metric, pd, e);
vp += ip;
if(d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if(d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if(d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if(d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
float4 result = make_float4(pa[n1].x, pa[n1].y, pa[n1].z, da[n1]);
if(n2 != -1)
result = make_float4(pa[n2].x, pa[n2].y, pa[n2].z, da[n2]) - result;
return result;
}
ccl_device float voronoi_F1(float3 p) { return voronoi_Fn(p, 0.0f, 0, -1).w; }
ccl_device float voronoi_F2(float3 p) { return voronoi_Fn(p, 0.0f, 1, -1).w; }
ccl_device float voronoi_F3(float3 p) { return voronoi_Fn(p, 0.0f, 2, -1).w; }
ccl_device float voronoi_F4(float3 p) { return voronoi_Fn(p, 0.0f, 3, -1).w; }
ccl_device float voronoi_F1F2(float3 p) { return voronoi_Fn(p, 0.0f, 0, 1).w; }
ccl_device float voronoi_Cr(float3 p)
{
/* crackle type pattern, just a scale/clamp of F2-F1 */
float t = 10.0f*voronoi_F1F2(p);
return (t > 1.0f)? 1.0f: t;
}
ccl_device float voronoi_F1S(float3 p) { return 2.0f*voronoi_F1(p) - 1.0f; }
ccl_device float voronoi_F2S(float3 p) { return 2.0f*voronoi_F2(p) - 1.0f; }
ccl_device float voronoi_F3S(float3 p) { return 2.0f*voronoi_F3(p) - 1.0f; }
ccl_device float voronoi_F4S(float3 p) { return 2.0f*voronoi_F4(p) - 1.0f; }
ccl_device float voronoi_F1F2S(float3 p) { return 2.0f*voronoi_F1F2(p) - 1.0f; }
ccl_device float voronoi_CrS(float3 p) { return 2.0f*voronoi_Cr(p) - 1.0f; }
/* Noise Bases */
ccl_device float noise_basis(float3 p, NodeNoiseBasis basis)
{
/* Only Perlin enabled for now, others break CUDA compile by making kernel
* too big, with compile using > 4GB, due to everything being inlined. */
#if 0
if(basis == NODE_NOISE_PERLIN)
#endif
return noise(p);
#if 0
if(basis == NODE_NOISE_VORONOI_F1)
return voronoi_F1S(p);
if(basis == NODE_NOISE_VORONOI_F2)
return voronoi_F2S(p);
if(basis == NODE_NOISE_VORONOI_F3)
return voronoi_F3S(p);
if(basis == NODE_NOISE_VORONOI_F4)
return voronoi_F4S(p);
if(basis == NODE_NOISE_VORONOI_F2_F1)
return voronoi_F1F2S(p);
if(basis == NODE_NOISE_VORONOI_CRACKLE)
return voronoi_CrS(p);
if(basis == NODE_NOISE_CELL_NOISE)
return cellnoise(p);
return 0.0f;
#endif
}
/* Soft/Hard Noise */
ccl_device float noise_basis_hard(float3 p, NodeNoiseBasis basis, int hard)
{
float t = noise_basis(p, basis);
return (hard)? fabsf(2.0f*t - 1.0f): t;
}
/* Turbulence */
ccl_device_noinline float noise_turbulence(float3 p, NodeNoiseBasis basis, float octaves, int hard)
{
float fscale = 1.0f;
float amp = 1.0f;
float sum = 0.0f;
int i, n;
octaves = clamp(octaves, 0.0f, 16.0f);
n = float_to_int(octaves);
for(i = 0; i <= n; i++) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabsf(2.0f*t - 1.0f);
sum += t*amp;
amp *= 0.5f;
fscale *= 2.0f;
}
float rmd = octaves - floorf(octaves);
if(rmd != 0.0f) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabsf(2.0f*t - 1.0f);
float sum2 = sum + t*amp;
sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
sum2 *= ((float)(1 << (n+1))/(float)((1 << (n+2)) - 1));
return (1.0f - rmd)*sum + rmd*sum2;
}
else {
sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
return sum;
}
}
CCL_NAMESPACE_END