blender/extern/carve/lib/geom2d.cpp
Sergey Sharybin e81f2853c8 Carve booleans library integration
==================================

Merging Carve library integration project into the trunk.

This commit switches Boolean modifier to another library which handles
mesh boolean operations in much stable and faster way, resolving old
well-known limitations of intern boolop library.

Carve is integrating as alternative interface for boolop library and
which makes it totally transparent for blender sources to switch between
old-fashioned boolop and new Carve backends.

Detailed changes in this commit:

- Integrated needed subset of Carve library sources into extern/
  Added script for re-bundling it (currently works only if repo
  was cloned by git-svn).
- Added BOP_CarveInterface for boolop library which can be used by
  Boolean modifier.
- Carve backend is enabled by default, can be disabled by WITH_BF_CARVE
  SCons option and WITH_CARVE CMake option.
- If Boost library is found in build environment it'll be used for
  unordered collections. If Boost isn't found, it'll fallback to TR1
  implementation for GCC compilers. Boost is obligatory if MSVC is used.

Tested on Linux 64bit and Windows 7 64bit.

NOTE: behavior of flat objects was changed. E.g. Plane-Sphere now gives
      plane with circle hole, not plane with semisphere. Don't think
      it's really issue because it's not actually defined behavior in
      such situations and both of ways might be useful. Since it's
      only known "regression" think it's OK to deal with it.

Details are there http://wiki.blender.org/index.php/User:Nazg-gul/CarveBooleans

Special thanks to:

- Ken Hughes: author of original carve integration patch.
- Campbell Barton: help in project development, review tests.
- Tobias Sargeant: author of Carve library, help in resolving some
                   merge stoppers, bug fixing.
2012-01-16 16:46:00 +00:00

261 lines
8.1 KiB
C++

// Begin License:
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#if defined(HAVE_CONFIG_H)
# include <carve_config.h>
#endif
#include <carve/geom2d.hpp>
#include <carve/math.hpp>
#include <carve/aabb.hpp>
#include <algorithm>
#include <iostream>
namespace carve {
namespace geom2d {
bool lineSegmentIntersection_simple(const P2 &l1v1, const P2 &l1v2,
const P2 &l2v1, const P2 &l2v2) {
geom::aabb<2> l1_aabb, l2_aabb;
l1_aabb.fit(l1v1, l1v2);
l2_aabb.fit(l2v1, l2v2);
if (l1_aabb.maxAxisSeparation(l2_aabb) > 0.0) {
return false;
}
double l1v1_side = orient2d(l2v1, l2v2, l1v1);
double l1v2_side = orient2d(l2v1, l2v2, l1v2);
double l2v1_side = orient2d(l1v1, l1v2, l2v1);
double l2v2_side = orient2d(l1v1, l1v2, l2v2);
if (l1v1_side * l1v2_side > 0.0 || l2v1_side * l2v2_side > 0.0) {
return false;
}
return true;
}
bool lineSegmentIntersection_simple(const LineSegment2 &l1,
const LineSegment2 &l2) {
return lineSegmentIntersection_simple(l1.v1, l1.v2, l2.v1, l2.v2);
}
LineIntersectionInfo lineSegmentIntersection(const P2 &l1v1, const P2 &l1v2,
const P2 &l2v1, const P2 &l2v2) {
geom::aabb<2> l1_aabb, l2_aabb;
l1_aabb.fit(l1v1, l1v2);
l2_aabb.fit(l2v1, l2v2);
if (l1_aabb.maxAxisSeparation(l2_aabb) > EPSILON) {
return LineIntersectionInfo(NO_INTERSECTION);
}
if (carve::geom::equal(l1v1, l1v2) || carve::geom::equal(l2v1, l2v2)) {
throw carve::exception("zero length line in intersection test");
}
double dx13 = l1v1.x - l2v1.x;
double dy13 = l1v1.y - l2v1.y;
double dx43 = l2v2.x - l2v1.x;
double dy43 = l2v2.y - l2v1.y;
double dx21 = l1v2.x - l1v1.x;
double dy21 = l1v2.y - l1v1.y;
double ua_n = dx43 * dy13 - dy43 * dx13;
double ub_n = dx21 * dy13 - dy21 * dx13;
double u_d = dy43 * dx21 - dx43 * dy21;
if (carve::math::ZERO(u_d)) {
if (carve::math::ZERO(ua_n)) {
if (carve::geom::equal(l1v2, l2v1)) {
return LineIntersectionInfo(INTERSECTION_PP, l1v2, 1, 2);
}
if (carve::geom::equal(l1v1, l2v2)) {
return LineIntersectionInfo(INTERSECTION_PP, l1v1, 0, 4);
}
if (l1v2.x > l2v1.x && l1v1.x < l2v2.x) {
return LineIntersectionInfo(COLINEAR);
}
}
return LineIntersectionInfo(NO_INTERSECTION);
}
double ua = ua_n / u_d;
double ub = ub_n / u_d;
if (-EPSILON <= ua && ua <= 1.0 + EPSILON && -EPSILON <= ub && ub <= 1.0 + EPSILON) {
double x = l1v1.x + ua * (l1v2.x - l1v1.x);
double y = l1v1.y + ua * (l1v2.y - l1v1.y);
P2 p = carve::geom::VECTOR(x, y);
double d1 = distance2(p, l1v1);
double d2 = distance2(p, l1v2);
double d3 = distance2(p, l2v1);
double d4 = distance2(p, l2v2);
int n = -1;
if (std::min(d1, d2) < EPSILON2) {
if (d1 < d2) {
p = l1v1; n = 0;
} else {
p = l1v2; n = 1;
}
if (std::min(d3, d4) < EPSILON2) {
if (d3 < d4) {
return LineIntersectionInfo(INTERSECTION_PP, p, n, 2);
} else {
return LineIntersectionInfo(INTERSECTION_PP, p, n, 3);
}
} else {
return LineIntersectionInfo(INTERSECTION_PL, p, n, -1);
}
} else if (std::min(d3, d4) < EPSILON2) {
if (d3 < d4) {
return LineIntersectionInfo(INTERSECTION_LP, l2v1, -1, 2);
} else {
return LineIntersectionInfo(INTERSECTION_LP, l2v2, -1, 3);
}
} else {
return LineIntersectionInfo(INTERSECTION_LL, p, -1, -1);
}
}
return LineIntersectionInfo(NO_INTERSECTION);
}
LineIntersectionInfo lineSegmentIntersection(const LineSegment2 &l1,
const LineSegment2 &l2) {
return lineSegmentIntersection(l1.v1, l1.v2, l2.v1, l2.v2);
}
double signedArea(const P2Vector &points) {
return signedArea(points, p2_adapt_ident());
}
bool pointInPolySimple(const P2Vector &points, const P2 &p) {
return pointInPolySimple(points, p2_adapt_ident(), p);
}
PolyInclusionInfo pointInPoly(const P2Vector &points, const P2 &p) {
return pointInPoly(points, p2_adapt_ident(), p);
}
int lineSegmentPolyIntersections(const P2Vector &points,
LineSegment2 line,
std::vector<PolyIntersectionInfo> &out) {
int count = 0;
if (line.v2 < line.v1) { line.flip(); }
out.clear();
for (P2Vector::size_type i = 0, l = points.size(); i < l; i++) {
P2Vector::size_type j = (i + 1) % l;
LineIntersectionInfo e =
lineSegmentIntersection(LineSegment2(points[i], points[j]), line);
switch (e.iclass) {
case INTERSECTION_PL: {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, e.ipoint, i));
count++;
break;
}
case INTERSECTION_PP: {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, e.ipoint, i + e.p2 - 2));
count++;
break;
}
case INTERSECTION_LP: {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, e.ipoint, i + e.p2 - 2));
count++;
break;
}
case INTERSECTION_LL: {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, e.ipoint, i));
count++;
break;
}
case COLINEAR: {
int n1 = (int)i, n2 = (int)j;
P2 q1 = points[i], q2 = points[j];
if (q2 < q1) { std::swap(q1, q2); std::swap(n1, n2); }
if (equal(q1, line.v1)) {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q1, n1));
} else if (q1.x < line.v1.x) {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, line.v1, i));
} else {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q1, n1));
}
if (equal(q2, line.v2)) {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q2, n2));
} else if (line.v2.x < q2.x) {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, line.v2, i));
} else {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q2, n2));
}
count += 2;
break;
}
default:
break;
}
}
return count;
}
struct FwdSort {
bool operator()(const PolyIntersectionInfo &a,
const PolyIntersectionInfo &b) const {
return a.ipoint < b.ipoint;
}
};
struct RevSort {
bool operator()(const PolyIntersectionInfo &a,
const PolyIntersectionInfo &b) const {
return a.ipoint < b.ipoint;
}
};
int sortedLineSegmentPolyIntersections(const P2Vector &points,
LineSegment2 line,
std::vector<PolyIntersectionInfo> &out) {
bool swapped = line.v2 < line.v1;
int count = lineSegmentPolyIntersections(points, line, out);
if (swapped) {
std::sort(out.begin(), out.end(), RevSort());
} else {
std::sort(out.begin(), out.end(), FwdSort());
}
return count;
}
bool pickContainedPoint(const std::vector<P2> &poly, P2 &result) {
return pickContainedPoint(poly, p2_adapt_ident(), result);
}
}
}