forked from bartvdbraak/blender
88b30ccb8c
* Style cleanup for M_PI constants. * Move Wireframe node into __EXTRA_NODES__ define
211 lines
5.8 KiB
C
211 lines
5.8 KiB
C
/*
|
|
* Parts adapted from Open Shading Language with this license:
|
|
*
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Sony Pictures Imageworks nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __KERNEL_PROJECTION_CL__
|
|
#define __KERNEL_PROJECTION_CL__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Spherical coordinates <-> Cartesian direction */
|
|
|
|
__device float2 direction_to_spherical(float3 dir)
|
|
{
|
|
float theta = acosf(dir.z);
|
|
float phi = atan2f(dir.x, dir.y);
|
|
|
|
return make_float2(theta, phi);
|
|
}
|
|
|
|
__device float3 spherical_to_direction(float theta, float phi)
|
|
{
|
|
return make_float3(
|
|
sinf(theta)*cosf(phi),
|
|
sinf(theta)*sinf(phi),
|
|
cosf(theta));
|
|
}
|
|
|
|
/* Equirectangular coordinates <-> Cartesian direction */
|
|
|
|
__device float2 direction_to_equirectangular(float3 dir)
|
|
{
|
|
float u = -atan2f(dir.y, dir.x)/(M_2PI_F) + 0.5f;
|
|
float v = atan2f(dir.z, hypotf(dir.x, dir.y))/M_PI_F + 0.5f;
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 equirectangular_to_direction(float u, float v)
|
|
{
|
|
float phi = M_PI_F*(1.0f - 2.0f*u);
|
|
float theta = M_PI_F*(1.0f - v);
|
|
|
|
return make_float3(
|
|
sinf(theta)*cosf(phi),
|
|
sinf(theta)*sinf(phi),
|
|
cosf(theta));
|
|
}
|
|
|
|
/* Fisheye <-> Cartesian direction */
|
|
|
|
__device float2 direction_to_fisheye(float3 dir, float fov)
|
|
{
|
|
float r = atan2f(sqrtf(dir.y*dir.y + dir.z*dir.z), dir.x) / fov;
|
|
float phi = atan2f(dir.z, dir.y);
|
|
|
|
float u = r * cosf(phi) + 0.5f;
|
|
float v = r * sinf(phi) + 0.5f;
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 fisheye_to_direction(float u, float v, float fov)
|
|
{
|
|
u = (u - 0.5f) * 2.0f;
|
|
v = (v - 0.5f) * 2.0f;
|
|
|
|
float r = sqrtf(u*u + v*v);
|
|
|
|
if(r > 1.0f)
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
float phi = acosf((r != 0.0f)? u/r: 0.0f);
|
|
float theta = r * fov * 0.5f;
|
|
|
|
if(v < 0.0f) phi = -phi;
|
|
|
|
return make_float3(
|
|
cosf(theta),
|
|
-cosf(phi)*sinf(theta),
|
|
sinf(phi)*sinf(theta)
|
|
);
|
|
}
|
|
|
|
__device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
|
|
{
|
|
float theta = acosf(dir.x);
|
|
float r = 2.0f * lens * sinf(theta * 0.5f);
|
|
float phi = atan2f(dir.z, dir.y);
|
|
|
|
float u = r * cosf(phi) / width + 0.5f;
|
|
float v = r * sinf(phi) / height + 0.5f;
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 fisheye_equisolid_to_direction(float u, float v, float lens, float fov, float width, float height)
|
|
{
|
|
u = (u - 0.5f) * width;
|
|
v = (v - 0.5f) * height;
|
|
|
|
float rmax = 2.0f * lens * sinf(fov * 0.25f);
|
|
float r = sqrtf(u*u + v*v);
|
|
|
|
if(r > rmax)
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
float phi = acosf((r != 0.0f)? u/r: 0.0f);
|
|
float theta = 2.0f * asinf(r/(2.0f * lens));
|
|
|
|
if(v < 0.0f) phi = -phi;
|
|
|
|
return make_float3(
|
|
cosf(theta),
|
|
-cosf(phi)*sinf(theta),
|
|
sinf(phi)*sinf(theta)
|
|
);
|
|
}
|
|
|
|
/* Mirror Ball <-> Cartesion direction */
|
|
|
|
__device float3 mirrorball_to_direction(float u, float v)
|
|
{
|
|
/* point on sphere */
|
|
float3 dir;
|
|
|
|
dir.x = 2.0f*u - 1.0f;
|
|
dir.z = 2.0f*v - 1.0f;
|
|
dir.y = -sqrtf(max(1.0f - dir.x*dir.x - dir.z*dir.z, 0.0f));
|
|
|
|
/* reflection */
|
|
float3 I = make_float3(0.0f, -1.0f, 0.0f);
|
|
|
|
return 2.0f*dot(dir, I)*dir - I;
|
|
}
|
|
|
|
__device float2 direction_to_mirrorball(float3 dir)
|
|
{
|
|
/* inverse of mirrorball_to_direction */
|
|
dir.y -= 1.0f;
|
|
|
|
float div = 2.0f*sqrtf(max(-0.5f*dir.y, 0.0f));
|
|
if(div > 0.0f)
|
|
dir /= div;
|
|
|
|
float u = 0.5f*(dir.x + 1.0f);
|
|
float v = 0.5f*(dir.z + 1.0f);
|
|
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
__device float3 panorama_to_direction(KernelGlobals *kg, float u, float v)
|
|
{
|
|
switch(kernel_data.cam.panorama_type) {
|
|
case PANORAMA_EQUIRECTANGULAR:
|
|
return equirectangular_to_direction(u, v);
|
|
case PANORAMA_FISHEYE_EQUIDISTANT:
|
|
return fisheye_to_direction(u, v, kernel_data.cam.fisheye_fov);
|
|
case PANORAMA_FISHEYE_EQUISOLID:
|
|
default:
|
|
return fisheye_equisolid_to_direction(u, v, kernel_data.cam.fisheye_lens,
|
|
kernel_data.cam.fisheye_fov, kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight);
|
|
}
|
|
}
|
|
|
|
__device float2 direction_to_panorama(KernelGlobals *kg, float3 dir)
|
|
{
|
|
switch(kernel_data.cam.panorama_type) {
|
|
case PANORAMA_EQUIRECTANGULAR:
|
|
return direction_to_equirectangular(dir);
|
|
case PANORAMA_FISHEYE_EQUIDISTANT:
|
|
return direction_to_fisheye(dir, kernel_data.cam.fisheye_fov);
|
|
case PANORAMA_FISHEYE_EQUISOLID:
|
|
default:
|
|
return direction_to_fisheye_equisolid(dir, kernel_data.cam.fisheye_lens,
|
|
kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __KERNEL_PROJECTION_CL__ */
|
|
|