forked from bartvdbraak/blender
779 lines
21 KiB
C++
779 lines
21 KiB
C++
/** \file itasc/Armature.cpp
|
|
* \ingroup itasc
|
|
*/
|
|
/*
|
|
* Armature.cpp
|
|
*
|
|
* Created on: Feb 3, 2009
|
|
* Author: benoitbolsee
|
|
*/
|
|
|
|
#include "Armature.hpp"
|
|
#include <algorithm>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
namespace iTaSC {
|
|
|
|
// a joint constraint is characterized by 5 values: tolerance, K, alpha, yd, yddot
|
|
static const unsigned int constraintCacheSize = 5;
|
|
std::string Armature::m_root = "root";
|
|
|
|
Armature::Armature():
|
|
ControlledObject(),
|
|
m_tree(),
|
|
m_njoint(0),
|
|
m_nconstraint(0),
|
|
m_noutput(0),
|
|
m_neffector(0),
|
|
m_finalized(false),
|
|
m_cache(NULL),
|
|
m_buf(NULL),
|
|
m_qCCh(-1),
|
|
m_qCTs(0),
|
|
m_yCCh(-1),
|
|
#if 0
|
|
m_yCTs(0),
|
|
#endif
|
|
m_qKdl(),
|
|
m_oldqKdl(),
|
|
m_newqKdl(),
|
|
m_qdotKdl(),
|
|
m_jac(NULL),
|
|
m_armlength(0.0),
|
|
m_jacsolver(NULL),
|
|
m_fksolver(NULL)
|
|
{
|
|
}
|
|
|
|
Armature::~Armature()
|
|
{
|
|
if (m_jac)
|
|
delete m_jac;
|
|
if (m_jacsolver)
|
|
delete m_jacsolver;
|
|
if (m_fksolver)
|
|
delete m_fksolver;
|
|
for (JointConstraintList::iterator it=m_constraints.begin(); it != m_constraints.end(); it++) {
|
|
if (*it != NULL)
|
|
delete (*it);
|
|
}
|
|
if (m_buf)
|
|
delete [] m_buf;
|
|
m_constraints.clear();
|
|
}
|
|
|
|
Armature::JointConstraint_struct::JointConstraint_struct(SegmentMap::const_iterator _segment, unsigned int _y_nr, ConstraintCallback _function, void* _param, bool _freeParam, bool _substep):
|
|
segment(_segment), value(), values(), function(_function), y_nr(_y_nr), param(_param), freeParam(_freeParam), substep(_substep)
|
|
{
|
|
memset(values, 0, sizeof(values));
|
|
memset(value, 0, sizeof(value));
|
|
values[0].feedback = 20.0;
|
|
values[1].feedback = 20.0;
|
|
values[2].feedback = 20.0;
|
|
values[0].tolerance = 1.0;
|
|
values[1].tolerance = 1.0;
|
|
values[2].tolerance = 1.0;
|
|
values[0].values = &value[0];
|
|
values[1].values = &value[1];
|
|
values[2].values = &value[2];
|
|
values[0].number = 1;
|
|
values[1].number = 1;
|
|
values[2].number = 1;
|
|
switch (segment->second.segment.getJoint().getType()) {
|
|
case Joint::RotX:
|
|
value[0].id = ID_JOINT_RX;
|
|
values[0].id = ID_JOINT_RX;
|
|
v_nr = 1;
|
|
break;
|
|
case Joint::RotY:
|
|
value[0].id = ID_JOINT_RY;
|
|
values[0].id = ID_JOINT_RY;
|
|
v_nr = 1;
|
|
break;
|
|
case Joint::RotZ:
|
|
value[0].id = ID_JOINT_RZ;
|
|
values[0].id = ID_JOINT_RZ;
|
|
v_nr = 1;
|
|
break;
|
|
case Joint::TransX:
|
|
value[0].id = ID_JOINT_TX;
|
|
values[0].id = ID_JOINT_TX;
|
|
v_nr = 1;
|
|
break;
|
|
case Joint::TransY:
|
|
value[0].id = ID_JOINT_TY;
|
|
values[0].id = ID_JOINT_TY;
|
|
v_nr = 1;
|
|
break;
|
|
case Joint::TransZ:
|
|
value[0].id = ID_JOINT_TZ;
|
|
values[0].id = ID_JOINT_TZ;
|
|
v_nr = 1;
|
|
break;
|
|
case Joint::Sphere:
|
|
values[0].id = value[0].id = ID_JOINT_RX;
|
|
values[1].id = value[1].id = ID_JOINT_RY;
|
|
values[2].id = value[2].id = ID_JOINT_RZ;
|
|
v_nr = 3;
|
|
break;
|
|
case Joint::Swing:
|
|
values[0].id = value[0].id = ID_JOINT_RX;
|
|
values[1].id = value[1].id = ID_JOINT_RZ;
|
|
v_nr = 2;
|
|
break;
|
|
case Joint::None:
|
|
break;
|
|
}
|
|
}
|
|
|
|
Armature::JointConstraint_struct::~JointConstraint_struct()
|
|
{
|
|
if (freeParam && param)
|
|
free(param);
|
|
}
|
|
|
|
void Armature::initCache(Cache *_cache)
|
|
{
|
|
m_cache = _cache;
|
|
m_qCCh = -1;
|
|
m_yCCh = -1;
|
|
m_buf = NULL;
|
|
if (m_cache) {
|
|
// add a special channel for the joint
|
|
m_qCCh = m_cache->addChannel(this, "q", m_qKdl.rows()*sizeof(double));
|
|
#if 0
|
|
// for the constraints, instead of creating many different channels, we will
|
|
// create a single channel for all the constraints
|
|
if (m_nconstraint) {
|
|
m_yCCh = m_cache->addChannel(this, "y", m_nconstraint*constraintCacheSize*sizeof(double));
|
|
m_buf = new double[m_nconstraint*constraintCacheSize];
|
|
}
|
|
// store the initial cache position at timestamp 0
|
|
pushConstraints(0);
|
|
#endif
|
|
pushQ(0);
|
|
}
|
|
}
|
|
|
|
void Armature::pushQ(CacheTS timestamp)
|
|
{
|
|
if (m_qCCh >= 0) {
|
|
// try to keep the cache if the joints are the same
|
|
m_cache->addCacheVectorIfDifferent(this, m_qCCh, timestamp, m_qKdl(0), m_qKdl.rows(), KDL::epsilon);
|
|
m_qCTs = timestamp;
|
|
}
|
|
}
|
|
|
|
/* return true if a m_cache position was loaded */
|
|
bool Armature::popQ(CacheTS timestamp)
|
|
{
|
|
if (m_qCCh >= 0) {
|
|
double* item;
|
|
item = (double *)m_cache->getPreviousCacheItem(this, m_qCCh, ×tamp);
|
|
if (item && m_qCTs != timestamp) {
|
|
double* q = m_qKdl(0);
|
|
memcpy(q, item, m_qKdl.rows()*sizeof(double));
|
|
m_qCTs = timestamp;
|
|
// changing the joint => recompute the jacobian
|
|
updateJacobian();
|
|
}
|
|
return (item) ? true : false;
|
|
}
|
|
return true;
|
|
}
|
|
#if 0
|
|
void Armature::pushConstraints(CacheTS timestamp)
|
|
{
|
|
if (m_yCCh >= 0) {
|
|
double *buf = NULL;
|
|
if (m_nconstraint) {
|
|
double *item = m_buf;
|
|
for (unsigned int i=0; i<m_nconstraint; i++) {
|
|
JointConstraint_struct* pConstraint = m_constraints[i];
|
|
*item++ = pConstraint->values.feedback;
|
|
*item++ = pConstraint->values.tolerance;
|
|
*item++ = pConstraint->value.yd;
|
|
*item++ = pConstraint->value.yddot;
|
|
*item++ = pConstraint->values.alpha;
|
|
}
|
|
}
|
|
m_cache->addCacheVectorIfDifferent(this, m_yCCh, timestamp, m_buf, m_nconstraint*constraintCacheSize, KDL::epsilon);
|
|
m_yCTs = timestamp;
|
|
}
|
|
}
|
|
|
|
/* return true if a cache position was loaded */
|
|
bool Armature::popConstraints(CacheTS timestamp)
|
|
{
|
|
if (m_yCCh >= 0) {
|
|
double *item = (double*)m_cache->getPreviousCacheItem(this, m_yCCh, ×tamp);
|
|
if (item && m_yCTs != timestamp) {
|
|
for (unsigned int i=0; i<m_nconstraint; i++) {
|
|
JointConstraint_struct* pConstraint = m_constraints[i];
|
|
if (pConstraint->function != Joint1DOFLimitCallback) {
|
|
pConstraint->values.feedback = *item++;
|
|
pConstraint->values.tolerance = *item++;
|
|
pConstraint->value.yd = *item++;
|
|
pConstraint->value.yddot = *item++;
|
|
pConstraint->values.alpha = *item++;
|
|
} else {
|
|
item += constraintCacheSize;
|
|
}
|
|
}
|
|
m_yCTs = timestamp;
|
|
}
|
|
return (item) ? true : false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
bool Armature::addSegment(const std::string& segment_name, const std::string& hook_name, const Joint& joint, const double& q_rest, const Frame& f_tip, const Inertia& M)
|
|
{
|
|
if (m_finalized)
|
|
return false;
|
|
|
|
Segment segment(joint, f_tip, M);
|
|
if (!m_tree.addSegment(segment, segment_name, hook_name))
|
|
return false;
|
|
int ndof = joint.getNDof();
|
|
for (int dof=0; dof<ndof; dof++) {
|
|
Joint_struct js(joint.getType(), ndof, (&q_rest)[dof]);
|
|
m_joints.push_back(js);
|
|
}
|
|
m_njoint+=ndof;
|
|
return true;
|
|
}
|
|
|
|
bool Armature::getSegment(const std::string& name, const unsigned int q_size, const Joint* &p_joint, double &q_rest, double &q, const Frame* &p_tip)
|
|
{
|
|
SegmentMap::const_iterator sit = m_tree.getSegment(name);
|
|
if (sit == m_tree.getSegments().end())
|
|
return false;
|
|
p_joint = &sit->second.segment.getJoint();
|
|
if (q_size < p_joint->getNDof())
|
|
return false;
|
|
p_tip = &sit->second.segment.getFrameToTip();
|
|
for (unsigned int dof=0; dof<p_joint->getNDof(); dof++) {
|
|
(&q_rest)[dof] = m_joints[sit->second.q_nr+dof].rest;
|
|
(&q)[dof] = m_qKdl[sit->second.q_nr+dof];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
double Armature::getMaxJointChange()
|
|
{
|
|
if (!m_finalized)
|
|
return 0.0;
|
|
double maxJoint = 0.0;
|
|
for (unsigned int i=0; i<m_njoint; i++) {
|
|
// this is a very rough calculation, it doesn't work well for spherical joint
|
|
double joint = fabs(m_oldqKdl[i]-m_qKdl[i]);
|
|
if (maxJoint < joint)
|
|
maxJoint = joint;
|
|
}
|
|
return maxJoint;
|
|
}
|
|
|
|
double Armature::getMaxEndEffectorChange()
|
|
{
|
|
if (!m_finalized)
|
|
return 0.0;
|
|
double maxDelta = 0.0;
|
|
double delta;
|
|
Twist twist;
|
|
for (unsigned int i = 0; i<m_neffector; i++) {
|
|
twist = diff(m_effectors[i].pose, m_effectors[i].oldpose);
|
|
delta = twist.rot.Norm();
|
|
if (delta > maxDelta)
|
|
maxDelta = delta;
|
|
delta = twist.vel.Norm();
|
|
if (delta > maxDelta)
|
|
maxDelta = delta;
|
|
}
|
|
return maxDelta;
|
|
}
|
|
|
|
int Armature::addConstraint(const std::string& segment_name, ConstraintCallback _function, void* _param, bool _freeParam, bool _substep)
|
|
{
|
|
SegmentMap::const_iterator segment_it = m_tree.getSegment(segment_name);
|
|
// not suitable for NDof joints
|
|
if (segment_it == m_tree.getSegments().end()) {
|
|
if (_freeParam && _param)
|
|
free(_param);
|
|
return -1;
|
|
}
|
|
JointConstraintList::iterator constraint_it;
|
|
JointConstraint_struct* pConstraint;
|
|
int iConstraint;
|
|
for (iConstraint=0, constraint_it=m_constraints.begin(); constraint_it != m_constraints.end(); constraint_it++, iConstraint++) {
|
|
pConstraint = *constraint_it;
|
|
if (pConstraint->segment == segment_it) {
|
|
// redefining a constraint
|
|
if (pConstraint->freeParam && pConstraint->param) {
|
|
free(pConstraint->param);
|
|
}
|
|
pConstraint->function = _function;
|
|
pConstraint->param = _param;
|
|
pConstraint->freeParam = _freeParam;
|
|
pConstraint->substep = _substep;
|
|
return iConstraint;
|
|
}
|
|
}
|
|
if (m_finalized) {
|
|
if (_freeParam && _param)
|
|
free(_param);
|
|
return -1;
|
|
}
|
|
// new constraint, append
|
|
pConstraint = new JointConstraint_struct(segment_it, m_noutput, _function, _param, _freeParam, _substep);
|
|
m_constraints.push_back(pConstraint);
|
|
m_noutput += pConstraint->v_nr;
|
|
return m_nconstraint++;
|
|
}
|
|
|
|
int Armature::addLimitConstraint(const std::string& segment_name, unsigned int dof, double _min, double _max)
|
|
{
|
|
SegmentMap::const_iterator segment_it = m_tree.getSegment(segment_name);
|
|
if (segment_it == m_tree.getSegments().end())
|
|
return -1;
|
|
const Joint& joint = segment_it->second.segment.getJoint();
|
|
if (joint.getNDof() != 1 && joint.getType() != Joint::Swing) {
|
|
// not suitable for Sphere joints
|
|
return -1;
|
|
}
|
|
if ((joint.getNDof() == 1 && dof > 0) || (joint.getNDof() == 2 && dof > 1))
|
|
return -1;
|
|
Joint_struct& p_joint = m_joints[segment_it->second.q_nr+dof];
|
|
p_joint.min = _min;
|
|
p_joint.max = _max;
|
|
p_joint.useLimit = true;
|
|
return 0;
|
|
}
|
|
|
|
int Armature::addEndEffector(const std::string& name)
|
|
{
|
|
const SegmentMap& segments = m_tree.getSegments();
|
|
if (segments.find(name) == segments.end())
|
|
return -1;
|
|
|
|
EffectorList::const_iterator it;
|
|
int ee;
|
|
for (it=m_effectors.begin(), ee=0; it!=m_effectors.end(); it++, ee++) {
|
|
if (it->name == name)
|
|
return ee;
|
|
}
|
|
if (m_finalized)
|
|
return -1;
|
|
Effector_struct effector(name);
|
|
m_effectors.push_back(effector);
|
|
return m_neffector++;
|
|
}
|
|
|
|
bool Armature::finalize()
|
|
{
|
|
unsigned int i, j, c;
|
|
if (m_finalized)
|
|
return true;
|
|
if (m_njoint == 0)
|
|
return false;
|
|
initialize(m_njoint, m_noutput, m_neffector);
|
|
for (i=c=0; i<m_nconstraint; i++) {
|
|
JointConstraint_struct* pConstraint = m_constraints[i];
|
|
for (j=0; j<pConstraint->v_nr; j++, c++) {
|
|
m_Cq(c,pConstraint->segment->second.q_nr+j) = 1.0;
|
|
m_Wy(c) = pConstraint->values[j].alpha/*/(pConstraint->values.tolerance*pConstraint->values.feedback)*/;
|
|
}
|
|
}
|
|
m_jacsolver= new KDL::TreeJntToJacSolver(m_tree);
|
|
m_fksolver = new KDL::TreeFkSolverPos_recursive(m_tree);
|
|
m_jac = new Jacobian(m_njoint);
|
|
m_qKdl.resize(m_njoint);
|
|
m_oldqKdl.resize(m_njoint);
|
|
m_newqKdl.resize(m_njoint);
|
|
m_qdotKdl.resize(m_njoint);
|
|
for (i=0; i<m_njoint; i++) {
|
|
m_newqKdl[i] = m_oldqKdl[i] = m_qKdl[i] = m_joints[i].rest;
|
|
}
|
|
updateJacobian();
|
|
// estimate the maximum size of the robot arms
|
|
double length;
|
|
m_armlength = 0.0;
|
|
for (i=0; i<m_neffector; i++) {
|
|
length = 0.0;
|
|
KDL::SegmentMap::const_iterator sit = m_tree.getSegment(m_effectors[i].name);
|
|
while (sit->first != "root") {
|
|
Frame tip = sit->second.segment.pose(m_qKdl(sit->second.q_nr));
|
|
length += tip.p.Norm();
|
|
sit = sit->second.parent;
|
|
}
|
|
if (length > m_armlength)
|
|
m_armlength = length;
|
|
}
|
|
if (m_armlength < KDL::epsilon)
|
|
m_armlength = KDL::epsilon;
|
|
m_finalized = true;
|
|
return true;
|
|
}
|
|
|
|
void Armature::pushCache(const Timestamp& timestamp)
|
|
{
|
|
if (!timestamp.substep && timestamp.cache) {
|
|
pushQ(timestamp.cacheTimestamp);
|
|
//pushConstraints(timestamp.cacheTimestamp);
|
|
}
|
|
}
|
|
|
|
bool Armature::setJointArray(const KDL::JntArray& joints)
|
|
{
|
|
if (!m_finalized)
|
|
return false;
|
|
if (joints.rows() != m_qKdl.rows())
|
|
return false;
|
|
m_qKdl = joints;
|
|
updateJacobian();
|
|
return true;
|
|
}
|
|
|
|
const KDL::JntArray& Armature::getJointArray()
|
|
{
|
|
return m_qKdl;
|
|
}
|
|
|
|
bool Armature::updateJoint(const Timestamp& timestamp, JointLockCallback& callback)
|
|
{
|
|
if (!m_finalized)
|
|
return false;
|
|
|
|
// integration and joint limit
|
|
// for spherical joint we must use a more sophisticated method
|
|
unsigned int q_nr;
|
|
double* qdot=m_qdotKdl(0);
|
|
double* q=m_qKdl(0);
|
|
double* newq=m_newqKdl(0);
|
|
double norm, qx, qz, CX, CZ, sx, sz;
|
|
bool locked = false;
|
|
int unlocked = 0;
|
|
|
|
for (q_nr=0; q_nr<m_nq; ++q_nr)
|
|
qdot[q_nr]=m_qdot[q_nr];
|
|
|
|
for (q_nr=0; q_nr<m_nq; ) {
|
|
Joint_struct* joint = &m_joints[q_nr];
|
|
if (!joint->locked) {
|
|
switch (joint->type) {
|
|
case KDL::Joint::Swing:
|
|
{
|
|
KDL::Rotation base = KDL::Rot(KDL::Vector(q[0],0.0,q[1]));
|
|
(base*KDL::Rot(KDL::Vector(qdot[0],0.0,qdot[1])*timestamp.realTimestep)).GetXZRot().GetValue(newq);
|
|
if (joint[0].useLimit) {
|
|
if (joint[1].useLimit) {
|
|
// elliptical limit
|
|
sx = sz = 1.0;
|
|
qx = newq[0];
|
|
qz = newq[1];
|
|
// determine in which quadrant we are
|
|
if (qx > 0.0 && qz > 0.0) {
|
|
CX = joint[0].max;
|
|
CZ = joint[1].max;
|
|
} else if (qx <= 0.0 && qz > 0.0) {
|
|
CX = -joint[0].min;
|
|
CZ = joint[1].max;
|
|
qx = -qx;
|
|
sx = -1.0;
|
|
} else if (qx <= 0.0 && qz <= 0.0) {
|
|
CX = -joint[0].min;
|
|
CZ = -joint[1].min;
|
|
qx = -qx;
|
|
qz = -qz;
|
|
sx = sz = -1.0;
|
|
} else {
|
|
CX = joint[0].max;
|
|
CZ = -joint[0].min;
|
|
qz = -qz;
|
|
sz = -1.0;
|
|
}
|
|
if (CX < KDL::epsilon || CZ < KDL::epsilon) {
|
|
// quadrant is degenerated
|
|
if (qx > CX) {
|
|
newq[0] = CX*sx;
|
|
joint[0].locked = true;
|
|
}
|
|
if (qz > CZ) {
|
|
newq[1] = CZ*sz;
|
|
joint[0].locked = true;
|
|
}
|
|
} else {
|
|
// general case
|
|
qx /= CX;
|
|
qz /= CZ;
|
|
norm = KDL::sqrt(KDL::sqr(qx)+KDL::sqr(qz));
|
|
if (norm > 1.0) {
|
|
norm = 1.0/norm;
|
|
newq[0] = qx*norm*CX*sx;
|
|
newq[1] = qz*norm*CZ*sz;
|
|
joint[0].locked = true;
|
|
}
|
|
}
|
|
} else {
|
|
// limit on X only
|
|
qx = newq[0];
|
|
if (qx > joint[0].max) {
|
|
newq[0] = joint[0].max;
|
|
joint[0].locked = true;
|
|
} else if (qx < joint[0].min) {
|
|
newq[0] = joint[0].min;
|
|
joint[0].locked = true;
|
|
}
|
|
}
|
|
} else if (joint[1].useLimit) {
|
|
// limit on Z only
|
|
qz = newq[1];
|
|
if (qz > joint[1].max) {
|
|
newq[1] = joint[1].max;
|
|
joint[0].locked = true;
|
|
} else if (qz < joint[1].min) {
|
|
newq[1] = joint[1].min;
|
|
joint[0].locked = true;
|
|
}
|
|
}
|
|
if (joint[0].locked) {
|
|
// check the difference from previous position
|
|
locked = true;
|
|
norm = KDL::sqr(newq[0]-q[0])+KDL::sqr(newq[1]-q[1]);
|
|
if (norm < KDL::epsilon2) {
|
|
// joint didn't move, no need to update the jacobian
|
|
callback.lockJoint(q_nr, 2);
|
|
} else {
|
|
// joint moved, compute the corresponding velocity
|
|
double deltaq[2];
|
|
(base.Inverse()*KDL::Rot(KDL::Vector(newq[0],0.0,newq[1]))).GetXZRot().GetValue(deltaq);
|
|
deltaq[0] /= timestamp.realTimestep;
|
|
deltaq[1] /= timestamp.realTimestep;
|
|
callback.lockJoint(q_nr, 2, deltaq);
|
|
// no need to update the other joints, it will be done after next rerun
|
|
goto end_loop;
|
|
}
|
|
} else
|
|
unlocked++;
|
|
break;
|
|
}
|
|
case KDL::Joint::Sphere:
|
|
{
|
|
(KDL::Rot(KDL::Vector(q))*KDL::Rot(KDL::Vector(qdot)*timestamp.realTimestep)).GetRot().GetValue(newq);
|
|
// no limit on this joint
|
|
unlocked++;
|
|
break;
|
|
}
|
|
default:
|
|
for (unsigned int i=0; i<joint->ndof; i++) {
|
|
newq[i] = q[i]+qdot[i]*timestamp.realTimestep;
|
|
if (joint[i].useLimit) {
|
|
if (newq[i] > joint[i].max) {
|
|
newq[i] = joint[i].max;
|
|
joint[0].locked = true;
|
|
} else if (newq[i] < joint[i].min) {
|
|
newq[i] = joint[i].min;
|
|
joint[0].locked = true;
|
|
}
|
|
}
|
|
}
|
|
if (joint[0].locked) {
|
|
locked = true;
|
|
norm = 0.0;
|
|
// compute delta to locked position
|
|
for (unsigned int i=0; i<joint->ndof; i++) {
|
|
qdot[i] = newq[i] - q[i];
|
|
norm += qdot[i]*qdot[i];
|
|
}
|
|
if (norm < KDL::epsilon2) {
|
|
// joint didn't move, no need to update the jacobian
|
|
callback.lockJoint(q_nr, joint->ndof);
|
|
} else {
|
|
// solver needs velocity, compute equivalent velocity
|
|
for (unsigned int i=0; i<joint->ndof; i++) {
|
|
qdot[i] /= timestamp.realTimestep;
|
|
}
|
|
callback.lockJoint(q_nr, joint->ndof, qdot);
|
|
goto end_loop;
|
|
}
|
|
} else
|
|
unlocked++;
|
|
}
|
|
}
|
|
qdot += joint->ndof;
|
|
q += joint->ndof;
|
|
newq += joint->ndof;
|
|
q_nr += joint->ndof;
|
|
}
|
|
end_loop:
|
|
// check if there any other unlocked joint
|
|
for ( ; q_nr<m_nq; ) {
|
|
Joint_struct* joint = &m_joints[q_nr];
|
|
if (!joint->locked)
|
|
unlocked++;
|
|
q_nr += joint->ndof;
|
|
}
|
|
// if all joints have been locked no need to run the solver again
|
|
return (unlocked) ? locked : false;
|
|
}
|
|
|
|
void Armature::updateKinematics(const Timestamp& timestamp){
|
|
|
|
//Integrate m_qdot
|
|
if (!m_finalized)
|
|
return;
|
|
|
|
// the new joint value have been computed already, just copy
|
|
memcpy(m_qKdl(0), m_newqKdl(0), sizeof(double)*m_qKdl.rows());
|
|
pushCache(timestamp);
|
|
updateJacobian();
|
|
// here update the desired output.
|
|
// We assume constant desired output for the joint limit constraint, no need to update it.
|
|
}
|
|
|
|
void Armature::updateJacobian()
|
|
{
|
|
//calculate pose and jacobian
|
|
for (unsigned int ee=0; ee<m_nee; ee++) {
|
|
m_fksolver->JntToCart(m_qKdl,m_effectors[ee].pose,m_effectors[ee].name,m_root);
|
|
m_jacsolver->JntToJac(m_qKdl,*m_jac,m_effectors[ee].name);
|
|
// get the jacobian for the base point, to prepare transformation to world reference
|
|
changeRefPoint(*m_jac,-m_effectors[ee].pose.p,*m_jac);
|
|
//copy to Jq:
|
|
e_matrix& Jq = m_JqArray[ee];
|
|
for(unsigned int i=0;i<6;i++) {
|
|
for(unsigned int j=0;j<m_nq;j++)
|
|
Jq(i,j)=(*m_jac)(i,j);
|
|
}
|
|
}
|
|
// remember that this object has moved
|
|
m_updated = true;
|
|
}
|
|
|
|
const Frame& Armature::getPose(const unsigned int ee)
|
|
{
|
|
if (!m_finalized)
|
|
return F_identity;
|
|
return (ee >= m_nee) ? F_identity : m_effectors[ee].pose;
|
|
}
|
|
|
|
bool Armature::getRelativeFrame(Frame& result, const std::string& segment_name, const std::string& base_name)
|
|
{
|
|
if (!m_finalized)
|
|
return false;
|
|
return (m_fksolver->JntToCart(m_qKdl,result,segment_name,base_name) < 0) ? false : true;
|
|
}
|
|
|
|
void Armature::updateControlOutput(const Timestamp& timestamp)
|
|
{
|
|
if (!m_finalized)
|
|
return;
|
|
|
|
|
|
if (!timestamp.substep && !timestamp.reiterate && timestamp.interpolate) {
|
|
popQ(timestamp.cacheTimestamp);
|
|
//popConstraints(timestamp.cacheTimestamp);
|
|
}
|
|
|
|
if (!timestamp.substep) {
|
|
// save previous joint state for getMaxJointChange()
|
|
memcpy(m_oldqKdl(0), m_qKdl(0), sizeof(double)*m_qKdl.rows());
|
|
for (unsigned int i=0; i<m_neffector; i++) {
|
|
m_effectors[i].oldpose = m_effectors[i].pose;
|
|
}
|
|
}
|
|
|
|
// remove all joint lock
|
|
for (JointList::iterator jit=m_joints.begin(); jit!=m_joints.end(); ++jit) {
|
|
(*jit).locked = false;
|
|
}
|
|
|
|
JointConstraintList::iterator it;
|
|
unsigned int iConstraint;
|
|
|
|
// scan through the constraints and call the callback functions
|
|
for (iConstraint=0, it=m_constraints.begin(); it!=m_constraints.end(); it++, iConstraint++) {
|
|
JointConstraint_struct* pConstraint = *it;
|
|
unsigned int nr, i;
|
|
for (i=0, nr = pConstraint->segment->second.q_nr; i<pConstraint->v_nr; i++, nr++) {
|
|
*(double *)&pConstraint->value[i].y = m_qKdl[nr];
|
|
*(double *)&pConstraint->value[i].ydot = m_qdotKdl[nr];
|
|
}
|
|
if (pConstraint->function && (pConstraint->substep || (!timestamp.reiterate && !timestamp.substep))) {
|
|
(*pConstraint->function)(timestamp, pConstraint->values, pConstraint->v_nr, pConstraint->param);
|
|
}
|
|
// recompute the weight in any case, that's the most likely modification
|
|
for (i=0, nr=pConstraint->y_nr; i<pConstraint->v_nr; i++, nr++) {
|
|
m_Wy(nr) = pConstraint->values[i].alpha/*/(pConstraint->values.tolerance*pConstraint->values.feedback)*/;
|
|
m_ydot(nr)=pConstraint->value[i].yddot+pConstraint->values[i].feedback*(pConstraint->value[i].yd-pConstraint->value[i].y);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Armature::setControlParameter(unsigned int constraintId, unsigned int valueId, ConstraintAction action, double value, double timestep)
|
|
{
|
|
unsigned int lastid, i;
|
|
if (constraintId == CONSTRAINT_ID_ALL) {
|
|
constraintId = 0;
|
|
lastid = m_nconstraint;
|
|
} else if (constraintId < m_nconstraint) {
|
|
lastid = constraintId+1;
|
|
} else {
|
|
return false;
|
|
}
|
|
for ( ; constraintId<lastid; ++constraintId) {
|
|
JointConstraint_struct* pConstraint = m_constraints[constraintId];
|
|
if (valueId == ID_JOINT) {
|
|
for (i=0; i<pConstraint->v_nr; i++) {
|
|
switch (action) {
|
|
case ACT_TOLERANCE:
|
|
pConstraint->values[i].tolerance = value;
|
|
break;
|
|
case ACT_FEEDBACK:
|
|
pConstraint->values[i].feedback = value;
|
|
break;
|
|
case ACT_ALPHA:
|
|
pConstraint->values[i].alpha = value;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (i=0; i<pConstraint->v_nr; i++) {
|
|
if (valueId == pConstraint->value[i].id) {
|
|
switch (action) {
|
|
case ACT_VALUE:
|
|
pConstraint->value[i].yd = value;
|
|
break;
|
|
case ACT_VELOCITY:
|
|
pConstraint->value[i].yddot = value;
|
|
break;
|
|
case ACT_TOLERANCE:
|
|
pConstraint->values[i].tolerance = value;
|
|
break;
|
|
case ACT_FEEDBACK:
|
|
pConstraint->values[i].feedback = value;
|
|
break;
|
|
case ACT_ALPHA:
|
|
pConstraint->values[i].alpha = value;
|
|
break;
|
|
case ACT_NONE:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (m_finalized) {
|
|
for (i=0; i<pConstraint->v_nr; i++)
|
|
m_Wy(pConstraint->y_nr+i) = pConstraint->values[i].alpha/*/(pConstraint->values.tolerance*pConstraint->values.feedback)*/;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|