forked from bartvdbraak/blender
403 lines
13 KiB
C
403 lines
13 KiB
C
/*
|
|
* Adapted from code Copyright 2009-2010 NVIDIA Corporation
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* Motion Triangle Primitive
|
|
*
|
|
* These are stored as regular triangles, plus extra positions and normals at
|
|
* times other than the frame center. Computing the triangle vertex positions
|
|
* or normals at a given ray time is a matter of interpolation of the two steps
|
|
* between which the ray time lies.
|
|
*
|
|
* The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
|
|
* and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Time interpolation of vertex positions and normals */
|
|
|
|
ccl_device_inline int find_attribute_motion(KernelGlobals *kg, int object, uint id, AttributeElement *elem)
|
|
{
|
|
/* todo: find a better (faster) solution for this, maybe store offset per object */
|
|
uint attr_offset = object*kernel_data.bvh.attributes_map_stride;
|
|
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
|
|
|
|
while(attr_map.x != id) {
|
|
attr_offset += ATTR_PRIM_TYPES;
|
|
attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
|
|
}
|
|
|
|
*elem = (AttributeElement)attr_map.y;
|
|
|
|
/* return result */
|
|
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
|
|
}
|
|
|
|
ccl_device_inline void motion_triangle_verts_for_step(KernelGlobals *kg, float3 tri_vindex, int offset, int numverts, int numsteps, int step, float3 verts[3])
|
|
{
|
|
if(step == numsteps) {
|
|
/* center step: regular vertex location */
|
|
verts[0] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
|
|
verts[1] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
|
|
verts[2] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
|
|
}
|
|
else {
|
|
/* center step not store in this array */
|
|
if(step > numsteps)
|
|
step--;
|
|
|
|
offset += step*numverts;
|
|
|
|
verts[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.x)));
|
|
verts[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.y)));
|
|
verts[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.z)));
|
|
}
|
|
}
|
|
|
|
ccl_device_inline void motion_triangle_normals_for_step(KernelGlobals *kg, float3 tri_vindex, int offset, int numverts, int numsteps, int step, float3 normals[3])
|
|
{
|
|
if(step == numsteps) {
|
|
/* center step: regular vertex location */
|
|
normals[0] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.x)));
|
|
normals[1] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.y)));
|
|
normals[2] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.z)));
|
|
}
|
|
else {
|
|
/* center step not stored in this array */
|
|
if(step > numsteps)
|
|
step--;
|
|
|
|
offset += step*numverts;
|
|
|
|
normals[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.x)));
|
|
normals[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.y)));
|
|
normals[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.z)));
|
|
}
|
|
}
|
|
|
|
ccl_device_inline void motion_triangle_vertices(KernelGlobals *kg, int object, int prim, float time, float3 verts[3])
|
|
{
|
|
/* get motion info */
|
|
int numsteps, numverts;
|
|
object_motion_info(kg, object, &numsteps, &numverts, NULL);
|
|
|
|
/* figure out which steps we need to fetch and their interpolation factor */
|
|
int maxstep = numsteps*2;
|
|
int step = min((int)(time*maxstep), maxstep-1);
|
|
float t = time*maxstep - step;
|
|
|
|
/* find attribute */
|
|
AttributeElement elem;
|
|
int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
|
|
kernel_assert(offset != ATTR_STD_NOT_FOUND);
|
|
|
|
/* fetch vertex coordinates */
|
|
float3 next_verts[3];
|
|
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, prim));
|
|
|
|
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
|
|
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
|
|
|
|
/* interpolate between steps */
|
|
verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
|
|
verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
|
|
verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
|
|
}
|
|
|
|
/* Refine triangle intersection to more precise hit point. For rays that travel
|
|
* far the precision is often not so good, this reintersects the primitive from
|
|
* a closer distance. */
|
|
|
|
ccl_device_inline float3 motion_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float3 verts[3])
|
|
{
|
|
float3 P = ray->P;
|
|
float3 D = ray->D;
|
|
float t = isect->t;
|
|
|
|
#ifdef __INTERSECTION_REFINE__
|
|
if(isect->object != OBJECT_NONE) {
|
|
#ifdef __OBJECT_MOTION__
|
|
Transform tfm = sd->ob_itfm;
|
|
#else
|
|
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
|
|
#endif
|
|
|
|
P = transform_point(&tfm, P);
|
|
D = transform_direction(&tfm, D*t);
|
|
D = normalize_len(D, &t);
|
|
}
|
|
|
|
P = P + D*t;
|
|
|
|
/* compute refined intersection distance */
|
|
const float3 e1 = verts[0] - verts[2];
|
|
const float3 e2 = verts[1] - verts[2];
|
|
const float3 s1 = cross(D, e2);
|
|
|
|
const float invdivisor = 1.0f/dot(s1, e1);
|
|
const float3 d = P - verts[2];
|
|
const float3 s2 = cross(d, e1);
|
|
float rt = dot(e2, s2)*invdivisor;
|
|
|
|
/* compute refined position */
|
|
P = P + D*rt;
|
|
|
|
if(isect->object != OBJECT_NONE) {
|
|
#ifdef __OBJECT_MOTION__
|
|
Transform tfm = sd->ob_tfm;
|
|
#else
|
|
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
|
|
#endif
|
|
|
|
P = transform_point(&tfm, P);
|
|
}
|
|
|
|
return P;
|
|
#else
|
|
return P + D*t;
|
|
#endif
|
|
}
|
|
|
|
/* Same as above, except that isect->t is assumed to be in object space for instancing */
|
|
|
|
#ifdef __SUBSURFACE__
|
|
ccl_device_inline float3 motion_triangle_refine_subsurface(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float3 verts[3])
|
|
{
|
|
float3 P = ray->P;
|
|
float3 D = ray->D;
|
|
float t = isect->t;
|
|
|
|
#ifdef __INTERSECTION_REFINE__
|
|
if(isect->object != OBJECT_NONE) {
|
|
#ifdef __OBJECT_MOTION__
|
|
Transform tfm = sd->ob_itfm;
|
|
#else
|
|
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
|
|
#endif
|
|
|
|
P = transform_point(&tfm, P);
|
|
D = transform_direction(&tfm, D);
|
|
D = normalize(D);
|
|
}
|
|
|
|
P = P + D*t;
|
|
|
|
/* compute refined intersection distance */
|
|
const float3 e1 = verts[0] - verts[2];
|
|
const float3 e2 = verts[1] - verts[2];
|
|
const float3 s1 = cross(D, e2);
|
|
|
|
const float invdivisor = 1.0f/dot(s1, e1);
|
|
const float3 d = P - verts[2];
|
|
const float3 s2 = cross(d, e1);
|
|
float rt = dot(e2, s2)*invdivisor;
|
|
|
|
P = P + D*rt;
|
|
|
|
if(isect->object != OBJECT_NONE) {
|
|
#ifdef __OBJECT_MOTION__
|
|
Transform tfm = sd->ob_tfm;
|
|
#else
|
|
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
|
|
#endif
|
|
|
|
P = transform_point(&tfm, P);
|
|
}
|
|
|
|
return P;
|
|
#else
|
|
return P + D*t;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Setup of motion triangle specific parts of ShaderData, moved into this one
|
|
* function to more easily share computation of interpolated positions and
|
|
* normals */
|
|
|
|
/* return 3 triangle vertex normals */
|
|
ccl_device_noinline void motion_triangle_shader_setup(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, bool subsurface)
|
|
{
|
|
/* get shader */
|
|
sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);
|
|
|
|
/* get motion info */
|
|
int numsteps, numverts;
|
|
object_motion_info(kg, sd->object, &numsteps, &numverts, NULL);
|
|
|
|
/* figure out which steps we need to fetch and their interpolation factor */
|
|
int maxstep = numsteps*2;
|
|
int step = min((int)(sd->time*maxstep), maxstep-1);
|
|
float t = sd->time*maxstep - step;
|
|
|
|
/* find attribute */
|
|
AttributeElement elem;
|
|
int offset = find_attribute_motion(kg, sd->object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
|
|
kernel_assert(offset != ATTR_STD_NOT_FOUND);
|
|
|
|
/* fetch vertex coordinates */
|
|
float3 verts[3], next_verts[3];
|
|
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, sd->prim));
|
|
|
|
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
|
|
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
|
|
|
|
/* interpolate between steps */
|
|
verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
|
|
verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
|
|
verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
|
|
|
|
/* compute refined position */
|
|
#ifdef __SUBSURFACE__
|
|
if(!subsurface)
|
|
#endif
|
|
sd->P = motion_triangle_refine(kg, sd, isect, ray, verts);
|
|
#ifdef __SUBSURFACE__
|
|
else
|
|
sd->P = motion_triangle_refine_subsurface(kg, sd, isect, ray, verts);
|
|
#endif
|
|
|
|
/* compute face normal */
|
|
float3 Ng;
|
|
if(sd->flag & SD_NEGATIVE_SCALE_APPLIED)
|
|
Ng = normalize(cross(verts[2] - verts[0], verts[1] - verts[0]));
|
|
else
|
|
Ng = normalize(cross(verts[1] - verts[0], verts[2] - verts[0]));
|
|
|
|
sd->Ng = Ng;
|
|
sd->N = Ng;
|
|
|
|
/* compute derivatives of P w.r.t. uv */
|
|
#ifdef __DPDU__
|
|
sd->dPdu = (verts[0] - verts[2]);
|
|
sd->dPdv = (verts[1] - verts[2]);
|
|
#endif
|
|
|
|
/* compute smooth normal */
|
|
if(sd->shader & SHADER_SMOOTH_NORMAL) {
|
|
/* find attribute */
|
|
AttributeElement elem;
|
|
int offset = find_attribute_motion(kg, sd->object, ATTR_STD_MOTION_VERTEX_NORMAL, &elem);
|
|
kernel_assert(offset != ATTR_STD_NOT_FOUND);
|
|
|
|
/* fetch vertex coordinates */
|
|
float3 normals[3], next_normals[3];
|
|
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
|
|
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals);
|
|
|
|
/* interpolate between steps */
|
|
normals[0] = (1.0f - t)*normals[0] + t*next_normals[0];
|
|
normals[1] = (1.0f - t)*normals[1] + t*next_normals[1];
|
|
normals[2] = (1.0f - t)*normals[2] + t*next_normals[2];
|
|
|
|
/* interpolate between vertices */
|
|
float u = sd->u;
|
|
float v = sd->v;
|
|
float w = 1.0f - u - v;
|
|
sd->N = (u*normals[0] + v*normals[1] + w*normals[2]);
|
|
}
|
|
}
|
|
|
|
/* Ray intersection. We simply compute the vertex positions at the given ray
|
|
* time and do a ray intersection with the resulting triangle */
|
|
|
|
ccl_device_inline bool motion_triangle_intersect(KernelGlobals *kg, Intersection *isect,
|
|
float3 P, float3 dir, float time, uint visibility, int object, int triAddr)
|
|
{
|
|
/* primitive index for vertex location lookup */
|
|
int prim = kernel_tex_fetch(__prim_index, triAddr);
|
|
int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, triAddr): object;
|
|
|
|
/* get vertex locations for intersection */
|
|
float3 verts[3];
|
|
motion_triangle_vertices(kg, fobject, prim, time, verts);
|
|
|
|
/* ray-triangle intersection, unoptimized */
|
|
float t, u, v;
|
|
|
|
if(ray_triangle_intersect_uv(P, dir, isect->t, verts[2], verts[0], verts[1], &u, &v, &t)) {
|
|
#ifdef __VISIBILITY_FLAG__
|
|
/* visibility flag test. we do it here under the assumption
|
|
* that most triangles are culled by node flags */
|
|
if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
|
|
#endif
|
|
{
|
|
isect->t = t;
|
|
isect->u = u;
|
|
isect->v = v;
|
|
isect->prim = triAddr;
|
|
isect->object = object;
|
|
isect->type = PRIMITIVE_MOTION_TRIANGLE;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Special ray intersection routines for subsurface scattering. In that case we
|
|
* only want to intersect with primitives in the same object, and if case of
|
|
* multiple hits we pick a single random primitive as the intersection point. */
|
|
|
|
#ifdef __SUBSURFACE__
|
|
ccl_device_inline void motion_triangle_intersect_subsurface(KernelGlobals *kg, Intersection *isect_array,
|
|
float3 P, float3 dir, float time, int object, int triAddr, float tmax, uint *num_hits, uint *lcg_state, int max_hits)
|
|
{
|
|
/* primitive index for vertex location lookup */
|
|
int prim = kernel_tex_fetch(__prim_index, triAddr);
|
|
int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, triAddr): object;
|
|
|
|
/* get vertex locations for intersection */
|
|
float3 verts[3];
|
|
motion_triangle_vertices(kg, fobject, prim, time, verts);
|
|
|
|
/* ray-triangle intersection, unoptimized */
|
|
float t, u, v;
|
|
|
|
if(ray_triangle_intersect_uv(P, dir, tmax, verts[2], verts[0], verts[1], &u, &v, &t)) {
|
|
(*num_hits)++;
|
|
|
|
int hit;
|
|
|
|
if(*num_hits <= max_hits) {
|
|
hit = *num_hits - 1;
|
|
}
|
|
else {
|
|
/* reservoir sampling: if we are at the maximum number of
|
|
* hits, randomly replace element or skip it */
|
|
hit = lcg_step_uint(lcg_state) % *num_hits;
|
|
|
|
if(hit >= max_hits)
|
|
return;
|
|
}
|
|
|
|
/* record intersection */
|
|
Intersection *isect = &isect_array[hit];
|
|
isect->t = t;
|
|
isect->u = u;
|
|
isect->v = v;
|
|
isect->prim = triAddr;
|
|
isect->object = object;
|
|
isect->type = PRIMITIVE_MOTION_TRIANGLE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
CCL_NAMESPACE_END
|
|
|