blender/intern/cycles/kernel/kernel_bake.h
Dalai Felinto 8c227adb8c Fix T41783: Cycles baking ignores displacement
Create unique flag for output shaders with displacement data and use it
to calculate transformed normal. Implementation suggested by Brecht Van
Lommel.

Reviewers: brecht

Differential Revision: https://developer.blender.org/D890
2014-11-11 18:21:56 -02:00

471 lines
12 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
ccl_device void compute_light_pass(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, RNG rng,
const bool is_combined, const bool is_ao, const bool is_sss, int sample)
{
/* initialize master radiance accumulator */
kernel_assert(kernel_data.film.use_light_pass);
path_radiance_init(L, kernel_data.film.use_light_pass);
PathRadiance L_sample;
PathState state;
Ray ray;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
bool is_sss_sample = is_sss;
/* init radiance */
path_radiance_init(&L_sample, kernel_data.film.use_light_pass);
/* init path state */
path_state_init(kg, &state, &rng, sample, NULL);
/* evaluate surface shader */
float rbsdf = path_state_rng_1D(kg, &rng, &state, PRNG_BSDF);
shader_eval_surface(kg, sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* TODO, disable the closures we won't need */
#ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched) {
/* regular path tracer */
#endif
/* sample ambient occlusion */
if(is_combined || is_ao) {
kernel_path_ao(kg, sd, &L_sample, &state, &rng, throughput);
}
#ifdef __SUBSURFACE__
/* sample subsurface scattering */
if((is_combined || is_sss_sample) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
if (kernel_path_subsurface_scatter(kg, sd, &L_sample, &state, &rng, &ray, &throughput))
is_sss_sample = true;
}
#endif
/* sample light and BSDF */
if((!is_sss_sample) && (!is_ao)) {
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
}
kernel_path_surface_connect_light(kg, &rng, sd, throughput, &state, &L_sample);
if(kernel_path_surface_bounce(kg, &rng, sd, &throughput, &state, &L_sample, &ray)) {
#ifdef __LAMP_MIS__
state.ray_t = 0.0f;
#endif
/* compute indirect light */
kernel_path_indirect(kg, &rng, ray, throughput, 1, state, &L_sample);
/* sum and reset indirect light pass variables for the next samples */
path_radiance_sum_indirect(&L_sample);
path_radiance_reset_indirect(&L_sample);
}
}
#ifdef __BRANCHED_PATH__
}
else {
/* branched path tracer */
/* sample ambient occlusion */
if(is_combined || is_ao) {
kernel_branched_path_ao(kg, sd, &L_sample, &state, &rng, throughput);
}
#ifdef __SUBSURFACE__
/* sample subsurface scattering */
if((is_combined || is_sss_sample) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
kernel_branched_path_subsurface_scatter(kg, sd, &L_sample, &state, &rng, &ray, throughput);
}
#endif
/* sample light and BSDF */
if((!is_sss_sample) && (!is_ao)) {
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
}
#if defined(__EMISSION__)
/* direct light */
if(kernel_data.integrator.use_direct_light) {
bool all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_surface_connect_light(kg, &rng,
sd, &state, throughput, 1.0f, &L_sample, all);
}
#endif
/* indirect light */
kernel_branched_path_surface_indirect_light(kg, &rng,
sd, throughput, 1.0f, &state, &L_sample);
}
}
#endif
/* accumulate into master L */
path_radiance_accum_sample(L, &L_sample, 1);
}
ccl_device bool is_aa_pass(ShaderEvalType type)
{
switch(type) {
case SHADER_EVAL_UV:
case SHADER_EVAL_NORMAL:
return false;
default:
return true;
}
}
ccl_device bool is_light_pass(ShaderEvalType type)
{
switch (type) {
case SHADER_EVAL_AO:
case SHADER_EVAL_COMBINED:
case SHADER_EVAL_SHADOW:
case SHADER_EVAL_DIFFUSE_DIRECT:
case SHADER_EVAL_GLOSSY_DIRECT:
case SHADER_EVAL_TRANSMISSION_DIRECT:
case SHADER_EVAL_SUBSURFACE_DIRECT:
case SHADER_EVAL_DIFFUSE_INDIRECT:
case SHADER_EVAL_GLOSSY_INDIRECT:
case SHADER_EVAL_TRANSMISSION_INDIRECT:
case SHADER_EVAL_SUBSURFACE_INDIRECT:
return true;
default:
return false;
}
}
#if 0
ccl_device_inline float bake_clamp_mirror_repeat(float u)
{
/* use mirror repeat (like opengl texture) so that if the barycentric
* coordinate goes past the end of the triangle it is not always clamped
* to the same value, gives ugly patterns */
float fu = floorf(u);
u = u - fu;
return (((int)fu) & 1)? 1.0f - u: u;
}
#endif
ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input, ccl_global float4 *output,
ShaderEvalType type, int i, int offset, int sample)
{
ShaderData sd;
uint4 in = input[i * 2];
uint4 diff = input[i * 2 + 1];
float3 out;
int object = in.x;
int prim = in.y;
if(prim == -1)
return;
float u = __uint_as_float(in.z);
float v = __uint_as_float(in.w);
float dudx = __uint_as_float(diff.x);
float dudy = __uint_as_float(diff.y);
float dvdx = __uint_as_float(diff.z);
float dvdy = __uint_as_float(diff.w);
int num_samples = kernel_data.integrator.aa_samples;
/* random number generator */
RNG rng = cmj_hash(offset + i, kernel_data.integrator.seed);
#if 0
uint rng_state = cmj_hash(i, kernel_data.integrator.seed);
float filter_x, filter_y;
path_rng_init(kg, &rng_state, sample, num_samples, &rng, 0, 0, &filter_x, &filter_y);
/* subpixel u/v offset */
if(sample > 0) {
u = bake_clamp_mirror_repeat(u + dudx*(filter_x - 0.5f) + dudy*(filter_y - 0.5f));
v = bake_clamp_mirror_repeat(v + dvdx*(filter_x - 0.5f) + dvdy*(filter_y - 0.5f));
}
#endif
/* triangle */
int shader;
float3 P, Ng;
triangle_point_normal(kg, object, prim, u, v, &P, &Ng, &shader);
/* dummy initilizations copied from SHADER_EVAL_DISPLACE */
float3 I = Ng;
float t = 0.0f;
float time = TIME_INVALID;
int bounce = 0;
int transparent_bounce = 0;
/* light passes */
PathRadiance L;
shader_setup_from_sample(kg, &sd, P, Ng, I, shader, object, prim, u, v, t, time, bounce, transparent_bounce);
sd.I = sd.N;
/* update differentials */
sd.dP.dx = sd.dPdu * dudx + sd.dPdv * dvdx;
sd.dP.dy = sd.dPdu * dudy + sd.dPdv * dvdy;
sd.du.dx = dudx;
sd.du.dy = dudy;
sd.dv.dx = dvdx;
sd.dv.dy = dvdy;
/* light passes */
if(is_light_pass(type)) {
compute_light_pass(kg, &sd, &L, rng,
(type == SHADER_EVAL_COMBINED),
(type == SHADER_EVAL_AO),
(type == SHADER_EVAL_SUBSURFACE_DIRECT ||
type == SHADER_EVAL_SUBSURFACE_INDIRECT),
sample);
}
switch (type) {
/* data passes */
case SHADER_EVAL_NORMAL:
{
if ((sd.flag & SD_HAS_BUMP)) {
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
}
/* compression: normal = (2 * color) - 1 */
out = sd.N * 0.5f + make_float3(0.5f, 0.5f, 0.5f);
break;
}
case SHADER_EVAL_UV:
{
out = primitive_uv(kg, &sd);
break;
}
case SHADER_EVAL_DIFFUSE_COLOR:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_diffuse(kg, &sd);
break;
}
case SHADER_EVAL_GLOSSY_COLOR:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_glossy(kg, &sd);
break;
}
case SHADER_EVAL_TRANSMISSION_COLOR:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_transmission(kg, &sd);
break;
}
case SHADER_EVAL_SUBSURFACE_COLOR:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_subsurface(kg, &sd);
#endif
break;
}
case SHADER_EVAL_EMISSION:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_EMISSION);
out = shader_emissive_eval(kg, &sd);
break;
}
#ifdef __PASSES__
/* light passes */
case SHADER_EVAL_AO:
{
out = L.ao;
break;
}
case SHADER_EVAL_COMBINED:
{
out = path_radiance_clamp_and_sum(kg, &L);
break;
}
case SHADER_EVAL_SHADOW:
{
out = make_float3(L.shadow.x, L.shadow.y, L.shadow.z);
break;
}
case SHADER_EVAL_DIFFUSE_DIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_diffuse, shader_bsdf_diffuse(kg, &sd));
break;
}
case SHADER_EVAL_GLOSSY_DIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_glossy, shader_bsdf_glossy(kg, &sd));
break;
}
case SHADER_EVAL_TRANSMISSION_DIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_transmission, shader_bsdf_transmission(kg, &sd));
break;
}
case SHADER_EVAL_SUBSURFACE_DIRECT:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_subsurface, shader_bsdf_subsurface(kg, &sd));
#endif
break;
}
case SHADER_EVAL_DIFFUSE_INDIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_diffuse, shader_bsdf_diffuse(kg, &sd));
break;
}
case SHADER_EVAL_GLOSSY_INDIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_glossy, shader_bsdf_glossy(kg, &sd));
break;
}
case SHADER_EVAL_TRANSMISSION_INDIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_transmission, shader_bsdf_transmission(kg, &sd));
break;
}
case SHADER_EVAL_SUBSURFACE_INDIRECT:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_subsurface, shader_bsdf_subsurface(kg, &sd));
#endif
break;
}
#endif
/* extra */
case SHADER_EVAL_ENVIRONMENT:
{
/* setup ray */
Ray ray;
ray.P = make_float3(0.0f, 0.0f, 0.0f);
ray.D = normalize(P);
ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
ray.dD = differential3_zero();
ray.dP = differential3_zero();
#endif
/* setup shader data */
shader_setup_from_background(kg, &sd, &ray, 0, 0);
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, flag, SHADER_CONTEXT_MAIN);
break;
}
default:
{
/* no real shader, returning the position of the verts for debugging */
out = normalize(P);
break;
}
}
/* write output */
float output_fac = is_aa_pass(type)? 1.0f/num_samples: 1.0f;
if(sample == 0)
output[i] = make_float4(out.x, out.y, out.z, 1.0f) * output_fac;
else
output[i] += make_float4(out.x, out.y, out.z, 1.0f) * output_fac;
}
ccl_device void kernel_shader_evaluate(KernelGlobals *kg, ccl_global uint4 *input, ccl_global float4 *output, ShaderEvalType type, int i, int sample)
{
ShaderData sd;
uint4 in = input[i];
float3 out;
if(type == SHADER_EVAL_DISPLACE) {
/* setup shader data */
int object = in.x;
int prim = in.y;
float u = __uint_as_float(in.z);
float v = __uint_as_float(in.w);
shader_setup_from_displace(kg, &sd, object, prim, u, v);
/* evaluate */
float3 P = sd.P;
shader_eval_displacement(kg, &sd, SHADER_CONTEXT_MAIN);
out = sd.P - P;
}
else { // SHADER_EVAL_BACKGROUND
/* setup ray */
Ray ray;
float u = __uint_as_float(in.x);
float v = __uint_as_float(in.y);
ray.P = make_float3(0.0f, 0.0f, 0.0f);
ray.D = equirectangular_to_direction(u, v);
ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
ray.dD = differential3_zero();
ray.dP = differential3_zero();
#endif
/* setup shader data */
shader_setup_from_background(kg, &sd, &ray, 0, 0);
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, flag, SHADER_CONTEXT_MAIN);
}
/* write output */
if(sample == 0)
output[i] = make_float4(out.x, out.y, out.z, 0.0f);
else
output[i] += make_float4(out.x, out.y, out.z, 0.0f);
}
CCL_NAMESPACE_END