forked from bartvdbraak/blender
409b3c9c9c
After discussion with cambo here we decided it's better to choose arbitrary side of the box (in this case it's X-axis) and use image from it. That's better than doing a blackness. P.S. This is literally a corner case anyway.
496 lines
20 KiB
C
496 lines
20 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
#ifdef __KERNEL_OPENCL__
|
|
|
|
/* For OpenCL all images are packed in a single array, and we do manual lookup
|
|
* and interpolation. */
|
|
|
|
ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int offset)
|
|
{
|
|
uchar4 r = kernel_tex_fetch(__tex_image_packed, offset);
|
|
float f = 1.0f/255.0f;
|
|
return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
|
|
}
|
|
|
|
ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
|
|
{
|
|
x %= width;
|
|
if(x < 0)
|
|
x += width;
|
|
return x;
|
|
}
|
|
|
|
ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
|
|
{
|
|
return clamp(x, 0, width-1);
|
|
}
|
|
|
|
ccl_device_inline float svm_image_texture_frac(float x, int *ix)
|
|
{
|
|
int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
|
|
*ix = i;
|
|
return x - (float)i;
|
|
}
|
|
|
|
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
|
|
{
|
|
/* first slots are used by float textures, which are not supported here */
|
|
if(id < TEX_NUM_FLOAT_IMAGES)
|
|
return make_float4(1.0f, 0.0f, 1.0f, 1.0f);
|
|
|
|
id -= TEX_NUM_FLOAT_IMAGES;
|
|
|
|
uint4 info = kernel_tex_fetch(__tex_image_packed_info, id);
|
|
uint width = info.x;
|
|
uint height = info.y;
|
|
uint offset = info.z;
|
|
uint periodic = (info.w & 0x1);
|
|
uint interpolation = info.w >> 1;
|
|
|
|
float4 r;
|
|
int ix, iy, nix, niy;
|
|
if (interpolation == INTERPOLATION_CLOSEST) {
|
|
svm_image_texture_frac(x*width, &ix);
|
|
svm_image_texture_frac(y*height, &iy);
|
|
|
|
if(periodic) {
|
|
ix = svm_image_texture_wrap_periodic(ix, width);
|
|
iy = svm_image_texture_wrap_periodic(iy, height);
|
|
}
|
|
else {
|
|
ix = svm_image_texture_wrap_clamp(ix, width);
|
|
iy = svm_image_texture_wrap_clamp(iy, height);
|
|
|
|
}
|
|
r = svm_image_texture_read(kg, offset + ix + iy*width);
|
|
}
|
|
else { /* We default to linear interpolation if it is not closest */
|
|
float tx = svm_image_texture_frac(x*width, &ix);
|
|
float ty = svm_image_texture_frac(y*height, &iy);
|
|
|
|
if(periodic) {
|
|
ix = svm_image_texture_wrap_periodic(ix, width);
|
|
iy = svm_image_texture_wrap_periodic(iy, height);
|
|
|
|
nix = svm_image_texture_wrap_periodic(ix+1, width);
|
|
niy = svm_image_texture_wrap_periodic(iy+1, height);
|
|
}
|
|
else {
|
|
ix = svm_image_texture_wrap_clamp(ix, width);
|
|
iy = svm_image_texture_wrap_clamp(iy, height);
|
|
|
|
nix = svm_image_texture_wrap_clamp(ix+1, width);
|
|
niy = svm_image_texture_wrap_clamp(iy+1, height);
|
|
}
|
|
|
|
|
|
r = (1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, offset + ix + iy*width);
|
|
r += (1.0f - ty)*tx*svm_image_texture_read(kg, offset + nix + iy*width);
|
|
r += ty*(1.0f - tx)*svm_image_texture_read(kg, offset + ix + niy*width);
|
|
r += ty*tx*svm_image_texture_read(kg, offset + nix + niy*width);
|
|
}
|
|
|
|
if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
|
|
float invw = 1.0f/r.w;
|
|
r.x *= invw;
|
|
r.y *= invw;
|
|
r.z *= invw;
|
|
|
|
if(id >= TEX_NUM_FLOAT_IMAGES) {
|
|
r.x = min(r.x, 1.0f);
|
|
r.y = min(r.y, 1.0f);
|
|
r.z = min(r.z, 1.0f);
|
|
}
|
|
}
|
|
|
|
if(srgb) {
|
|
r.x = color_srgb_to_scene_linear(r.x);
|
|
r.y = color_srgb_to_scene_linear(r.y);
|
|
r.z = color_srgb_to_scene_linear(r.z);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
#else
|
|
|
|
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
|
|
{
|
|
#ifdef __KERNEL_CPU__
|
|
#ifdef __KERNEL_SSE2__
|
|
ssef r_ssef;
|
|
float4 &r = (float4 &)r_ssef;
|
|
r = kernel_tex_image_interp(id, x, y);
|
|
#else
|
|
float4 r = kernel_tex_image_interp(id, x, y);
|
|
#endif
|
|
#else
|
|
float4 r;
|
|
|
|
/* not particularly proud of this massive switch, what are the
|
|
* alternatives?
|
|
* - use a single big 1D texture, and do our own lookup/filtering
|
|
* - group by size and use a 3d texture, performance impact
|
|
* - group into larger texture with some padding for correct lerp
|
|
*
|
|
* also note that cuda has a textures limit (128 for Fermi, 256 for Kepler),
|
|
* and we cannot use all since we still need some for other storage */
|
|
|
|
switch(id) {
|
|
case 0: r = kernel_tex_image_interp(__tex_image_float_000, x, y); break;
|
|
case 1: r = kernel_tex_image_interp(__tex_image_float_001, x, y); break;
|
|
case 2: r = kernel_tex_image_interp(__tex_image_float_002, x, y); break;
|
|
case 3: r = kernel_tex_image_interp(__tex_image_float_003, x, y); break;
|
|
case 4: r = kernel_tex_image_interp(__tex_image_float_004, x, y); break;
|
|
case 5: r = kernel_tex_image_interp(__tex_image_005, x, y); break;
|
|
case 6: r = kernel_tex_image_interp(__tex_image_006, x, y); break;
|
|
case 7: r = kernel_tex_image_interp(__tex_image_007, x, y); break;
|
|
case 8: r = kernel_tex_image_interp(__tex_image_008, x, y); break;
|
|
case 9: r = kernel_tex_image_interp(__tex_image_009, x, y); break;
|
|
case 10: r = kernel_tex_image_interp(__tex_image_010, x, y); break;
|
|
case 11: r = kernel_tex_image_interp(__tex_image_011, x, y); break;
|
|
case 12: r = kernel_tex_image_interp(__tex_image_012, x, y); break;
|
|
case 13: r = kernel_tex_image_interp(__tex_image_013, x, y); break;
|
|
case 14: r = kernel_tex_image_interp(__tex_image_014, x, y); break;
|
|
case 15: r = kernel_tex_image_interp(__tex_image_015, x, y); break;
|
|
case 16: r = kernel_tex_image_interp(__tex_image_016, x, y); break;
|
|
case 17: r = kernel_tex_image_interp(__tex_image_017, x, y); break;
|
|
case 18: r = kernel_tex_image_interp(__tex_image_018, x, y); break;
|
|
case 19: r = kernel_tex_image_interp(__tex_image_019, x, y); break;
|
|
case 20: r = kernel_tex_image_interp(__tex_image_020, x, y); break;
|
|
case 21: r = kernel_tex_image_interp(__tex_image_021, x, y); break;
|
|
case 22: r = kernel_tex_image_interp(__tex_image_022, x, y); break;
|
|
case 23: r = kernel_tex_image_interp(__tex_image_023, x, y); break;
|
|
case 24: r = kernel_tex_image_interp(__tex_image_024, x, y); break;
|
|
case 25: r = kernel_tex_image_interp(__tex_image_025, x, y); break;
|
|
case 26: r = kernel_tex_image_interp(__tex_image_026, x, y); break;
|
|
case 27: r = kernel_tex_image_interp(__tex_image_027, x, y); break;
|
|
case 28: r = kernel_tex_image_interp(__tex_image_028, x, y); break;
|
|
case 29: r = kernel_tex_image_interp(__tex_image_029, x, y); break;
|
|
case 30: r = kernel_tex_image_interp(__tex_image_030, x, y); break;
|
|
case 31: r = kernel_tex_image_interp(__tex_image_031, x, y); break;
|
|
case 32: r = kernel_tex_image_interp(__tex_image_032, x, y); break;
|
|
case 33: r = kernel_tex_image_interp(__tex_image_033, x, y); break;
|
|
case 34: r = kernel_tex_image_interp(__tex_image_034, x, y); break;
|
|
case 35: r = kernel_tex_image_interp(__tex_image_035, x, y); break;
|
|
case 36: r = kernel_tex_image_interp(__tex_image_036, x, y); break;
|
|
case 37: r = kernel_tex_image_interp(__tex_image_037, x, y); break;
|
|
case 38: r = kernel_tex_image_interp(__tex_image_038, x, y); break;
|
|
case 39: r = kernel_tex_image_interp(__tex_image_039, x, y); break;
|
|
case 40: r = kernel_tex_image_interp(__tex_image_040, x, y); break;
|
|
case 41: r = kernel_tex_image_interp(__tex_image_041, x, y); break;
|
|
case 42: r = kernel_tex_image_interp(__tex_image_042, x, y); break;
|
|
case 43: r = kernel_tex_image_interp(__tex_image_043, x, y); break;
|
|
case 44: r = kernel_tex_image_interp(__tex_image_044, x, y); break;
|
|
case 45: r = kernel_tex_image_interp(__tex_image_045, x, y); break;
|
|
case 46: r = kernel_tex_image_interp(__tex_image_046, x, y); break;
|
|
case 47: r = kernel_tex_image_interp(__tex_image_047, x, y); break;
|
|
case 48: r = kernel_tex_image_interp(__tex_image_048, x, y); break;
|
|
case 49: r = kernel_tex_image_interp(__tex_image_049, x, y); break;
|
|
case 50: r = kernel_tex_image_interp(__tex_image_050, x, y); break;
|
|
case 51: r = kernel_tex_image_interp(__tex_image_051, x, y); break;
|
|
case 52: r = kernel_tex_image_interp(__tex_image_052, x, y); break;
|
|
case 53: r = kernel_tex_image_interp(__tex_image_053, x, y); break;
|
|
case 54: r = kernel_tex_image_interp(__tex_image_054, x, y); break;
|
|
case 55: r = kernel_tex_image_interp(__tex_image_055, x, y); break;
|
|
case 56: r = kernel_tex_image_interp(__tex_image_056, x, y); break;
|
|
case 57: r = kernel_tex_image_interp(__tex_image_057, x, y); break;
|
|
case 58: r = kernel_tex_image_interp(__tex_image_058, x, y); break;
|
|
case 59: r = kernel_tex_image_interp(__tex_image_059, x, y); break;
|
|
case 60: r = kernel_tex_image_interp(__tex_image_060, x, y); break;
|
|
case 61: r = kernel_tex_image_interp(__tex_image_061, x, y); break;
|
|
case 62: r = kernel_tex_image_interp(__tex_image_062, x, y); break;
|
|
case 63: r = kernel_tex_image_interp(__tex_image_063, x, y); break;
|
|
case 64: r = kernel_tex_image_interp(__tex_image_064, x, y); break;
|
|
case 65: r = kernel_tex_image_interp(__tex_image_065, x, y); break;
|
|
case 66: r = kernel_tex_image_interp(__tex_image_066, x, y); break;
|
|
case 67: r = kernel_tex_image_interp(__tex_image_067, x, y); break;
|
|
case 68: r = kernel_tex_image_interp(__tex_image_068, x, y); break;
|
|
case 69: r = kernel_tex_image_interp(__tex_image_069, x, y); break;
|
|
case 70: r = kernel_tex_image_interp(__tex_image_070, x, y); break;
|
|
case 71: r = kernel_tex_image_interp(__tex_image_071, x, y); break;
|
|
case 72: r = kernel_tex_image_interp(__tex_image_072, x, y); break;
|
|
case 73: r = kernel_tex_image_interp(__tex_image_073, x, y); break;
|
|
case 74: r = kernel_tex_image_interp(__tex_image_074, x, y); break;
|
|
case 75: r = kernel_tex_image_interp(__tex_image_075, x, y); break;
|
|
case 76: r = kernel_tex_image_interp(__tex_image_076, x, y); break;
|
|
case 77: r = kernel_tex_image_interp(__tex_image_077, x, y); break;
|
|
case 78: r = kernel_tex_image_interp(__tex_image_078, x, y); break;
|
|
case 79: r = kernel_tex_image_interp(__tex_image_079, x, y); break;
|
|
case 80: r = kernel_tex_image_interp(__tex_image_080, x, y); break;
|
|
case 81: r = kernel_tex_image_interp(__tex_image_081, x, y); break;
|
|
case 82: r = kernel_tex_image_interp(__tex_image_082, x, y); break;
|
|
case 83: r = kernel_tex_image_interp(__tex_image_083, x, y); break;
|
|
case 84: r = kernel_tex_image_interp(__tex_image_084, x, y); break;
|
|
case 85: r = kernel_tex_image_interp(__tex_image_085, x, y); break;
|
|
case 86: r = kernel_tex_image_interp(__tex_image_086, x, y); break;
|
|
case 87: r = kernel_tex_image_interp(__tex_image_087, x, y); break;
|
|
case 88: r = kernel_tex_image_interp(__tex_image_088, x, y); break;
|
|
case 89: r = kernel_tex_image_interp(__tex_image_089, x, y); break;
|
|
case 90: r = kernel_tex_image_interp(__tex_image_090, x, y); break;
|
|
case 91: r = kernel_tex_image_interp(__tex_image_091, x, y); break;
|
|
case 92: r = kernel_tex_image_interp(__tex_image_092, x, y); break;
|
|
case 93: r = kernel_tex_image_interp(__tex_image_093, x, y); break;
|
|
case 94: r = kernel_tex_image_interp(__tex_image_094, x, y); break;
|
|
case 95: r = kernel_tex_image_interp(__tex_image_095, x, y); break;
|
|
case 96: r = kernel_tex_image_interp(__tex_image_096, x, y); break;
|
|
case 97: r = kernel_tex_image_interp(__tex_image_097, x, y); break;
|
|
case 98: r = kernel_tex_image_interp(__tex_image_098, x, y); break;
|
|
|
|
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
|
|
case 99: r = kernel_tex_image_interp(__tex_image_099, x, y); break;
|
|
case 100: r = kernel_tex_image_interp(__tex_image_100, x, y); break;
|
|
case 101: r = kernel_tex_image_interp(__tex_image_101, x, y); break;
|
|
case 102: r = kernel_tex_image_interp(__tex_image_102, x, y); break;
|
|
case 103: r = kernel_tex_image_interp(__tex_image_103, x, y); break;
|
|
case 104: r = kernel_tex_image_interp(__tex_image_104, x, y); break;
|
|
case 105: r = kernel_tex_image_interp(__tex_image_105, x, y); break;
|
|
case 106: r = kernel_tex_image_interp(__tex_image_106, x, y); break;
|
|
case 107: r = kernel_tex_image_interp(__tex_image_107, x, y); break;
|
|
case 108: r = kernel_tex_image_interp(__tex_image_108, x, y); break;
|
|
case 109: r = kernel_tex_image_interp(__tex_image_109, x, y); break;
|
|
case 110: r = kernel_tex_image_interp(__tex_image_110, x, y); break;
|
|
case 111: r = kernel_tex_image_interp(__tex_image_111, x, y); break;
|
|
case 112: r = kernel_tex_image_interp(__tex_image_112, x, y); break;
|
|
case 113: r = kernel_tex_image_interp(__tex_image_113, x, y); break;
|
|
case 114: r = kernel_tex_image_interp(__tex_image_114, x, y); break;
|
|
case 115: r = kernel_tex_image_interp(__tex_image_115, x, y); break;
|
|
case 116: r = kernel_tex_image_interp(__tex_image_116, x, y); break;
|
|
case 117: r = kernel_tex_image_interp(__tex_image_117, x, y); break;
|
|
case 118: r = kernel_tex_image_interp(__tex_image_118, x, y); break;
|
|
case 119: r = kernel_tex_image_interp(__tex_image_119, x, y); break;
|
|
case 120: r = kernel_tex_image_interp(__tex_image_120, x, y); break;
|
|
case 121: r = kernel_tex_image_interp(__tex_image_121, x, y); break;
|
|
case 122: r = kernel_tex_image_interp(__tex_image_122, x, y); break;
|
|
case 123: r = kernel_tex_image_interp(__tex_image_123, x, y); break;
|
|
case 124: r = kernel_tex_image_interp(__tex_image_124, x, y); break;
|
|
case 125: r = kernel_tex_image_interp(__tex_image_125, x, y); break;
|
|
case 126: r = kernel_tex_image_interp(__tex_image_126, x, y); break;
|
|
case 127: r = kernel_tex_image_interp(__tex_image_127, x, y); break;
|
|
case 128: r = kernel_tex_image_interp(__tex_image_128, x, y); break;
|
|
case 129: r = kernel_tex_image_interp(__tex_image_129, x, y); break;
|
|
case 130: r = kernel_tex_image_interp(__tex_image_130, x, y); break;
|
|
case 131: r = kernel_tex_image_interp(__tex_image_131, x, y); break;
|
|
case 132: r = kernel_tex_image_interp(__tex_image_132, x, y); break;
|
|
case 133: r = kernel_tex_image_interp(__tex_image_133, x, y); break;
|
|
case 134: r = kernel_tex_image_interp(__tex_image_134, x, y); break;
|
|
case 135: r = kernel_tex_image_interp(__tex_image_135, x, y); break;
|
|
case 136: r = kernel_tex_image_interp(__tex_image_136, x, y); break;
|
|
case 137: r = kernel_tex_image_interp(__tex_image_137, x, y); break;
|
|
case 138: r = kernel_tex_image_interp(__tex_image_138, x, y); break;
|
|
case 139: r = kernel_tex_image_interp(__tex_image_139, x, y); break;
|
|
case 140: r = kernel_tex_image_interp(__tex_image_140, x, y); break;
|
|
case 141: r = kernel_tex_image_interp(__tex_image_141, x, y); break;
|
|
case 142: r = kernel_tex_image_interp(__tex_image_142, x, y); break;
|
|
case 143: r = kernel_tex_image_interp(__tex_image_143, x, y); break;
|
|
case 144: r = kernel_tex_image_interp(__tex_image_144, x, y); break;
|
|
case 145: r = kernel_tex_image_interp(__tex_image_145, x, y); break;
|
|
case 146: r = kernel_tex_image_interp(__tex_image_146, x, y); break;
|
|
case 147: r = kernel_tex_image_interp(__tex_image_147, x, y); break;
|
|
case 148: r = kernel_tex_image_interp(__tex_image_148, x, y); break;
|
|
case 149: r = kernel_tex_image_interp(__tex_image_149, x, y); break;
|
|
case 150: r = kernel_tex_image_interp(__tex_image_150, x, y); break;
|
|
#endif
|
|
|
|
default:
|
|
kernel_assert(0);
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __KERNEL_SSE2__
|
|
float alpha = r.w;
|
|
|
|
if(use_alpha && alpha != 1.0f && alpha != 0.0f) {
|
|
r_ssef = r_ssef / ssef(alpha);
|
|
if(id >= TEX_NUM_FLOAT_IMAGES)
|
|
r_ssef = min(r_ssef, ssef(1.0f));
|
|
r.w = alpha;
|
|
}
|
|
|
|
if(srgb) {
|
|
r_ssef = color_srgb_to_scene_linear(r_ssef);
|
|
r.w = alpha;
|
|
}
|
|
#else
|
|
if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
|
|
float invw = 1.0f/r.w;
|
|
r.x *= invw;
|
|
r.y *= invw;
|
|
r.z *= invw;
|
|
|
|
if(id >= TEX_NUM_FLOAT_IMAGES) {
|
|
r.x = min(r.x, 1.0f);
|
|
r.y = min(r.y, 1.0f);
|
|
r.z = min(r.z, 1.0f);
|
|
}
|
|
}
|
|
|
|
if(srgb) {
|
|
r.x = color_srgb_to_scene_linear(r.x);
|
|
r.y = color_srgb_to_scene_linear(r.y);
|
|
r.z = color_srgb_to_scene_linear(r.z);
|
|
}
|
|
#endif
|
|
|
|
return r;
|
|
}
|
|
|
|
#endif
|
|
|
|
ccl_device void svm_node_tex_image(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
|
|
{
|
|
uint id = node.y;
|
|
uint co_offset, out_offset, alpha_offset, srgb;
|
|
|
|
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
|
|
|
|
float3 co = stack_load_float3(stack, co_offset);
|
|
uint use_alpha = stack_valid(alpha_offset);
|
|
float4 f = svm_image_texture(kg, id, co.x, co.y, srgb, use_alpha);
|
|
|
|
if(stack_valid(out_offset))
|
|
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
|
|
if(stack_valid(alpha_offset))
|
|
stack_store_float(stack, alpha_offset, f.w);
|
|
}
|
|
|
|
ccl_device void svm_node_tex_image_box(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
|
|
{
|
|
/* get object space normal */
|
|
float3 N = sd->N;
|
|
|
|
N = sd->N;
|
|
if(sd->object != OBJECT_NONE)
|
|
object_inverse_normal_transform(kg, sd, &N);
|
|
|
|
/* project from direction vector to barycentric coordinates in triangles */
|
|
N.x = fabsf(N.x);
|
|
N.y = fabsf(N.y);
|
|
N.z = fabsf(N.z);
|
|
|
|
N /= (N.x + N.y + N.z);
|
|
|
|
/* basic idea is to think of this as a triangle, each corner representing
|
|
* one of the 3 faces of the cube. in the corners we have single textures,
|
|
* in between we blend between two textures, and in the middle we a blend
|
|
* between three textures.
|
|
*
|
|
* the Nxyz values are the barycentric coordinates in an equilateral
|
|
* triangle, which in case of blending, in the middle has a smaller
|
|
* equilateral triangle where 3 textures blend. this divides things into
|
|
* 7 zones, with an if() test for each zone */
|
|
|
|
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
|
|
float blend = __int_as_float(node.w);
|
|
float limit = 0.5f*(1.0f + blend);
|
|
|
|
/* first test for corners with single texture */
|
|
if(N.x > limit*(N.x + N.y) && N.x > limit*(N.x + N.z)) {
|
|
weight.x = 1.0f;
|
|
}
|
|
else if(N.y > limit*(N.x + N.y) && N.y > limit*(N.y + N.z)) {
|
|
weight.y = 1.0f;
|
|
}
|
|
else if(N.z > limit*(N.x + N.z) && N.z > limit*(N.y + N.z)) {
|
|
weight.z = 1.0f;
|
|
}
|
|
else if(blend > 0.0f) {
|
|
/* in case of blending, test for mixes between two textures */
|
|
if(N.z < (1.0f - limit)*(N.y + N.x)) {
|
|
weight.x = N.x/(N.x + N.y);
|
|
weight.x = clamp((weight.x - 0.5f*(1.0f - blend))/blend, 0.0f, 1.0f);
|
|
weight.y = 1.0f - weight.x;
|
|
}
|
|
else if(N.x < (1.0f - limit)*(N.y + N.z)) {
|
|
weight.y = N.y/(N.y + N.z);
|
|
weight.y = clamp((weight.y - 0.5f*(1.0f - blend))/blend, 0.0f, 1.0f);
|
|
weight.z = 1.0f - weight.y;
|
|
}
|
|
else if(N.y < (1.0f - limit)*(N.x + N.z)) {
|
|
weight.x = N.x/(N.x + N.z);
|
|
weight.x = clamp((weight.x - 0.5f*(1.0f - blend))/blend, 0.0f, 1.0f);
|
|
weight.z = 1.0f - weight.x;
|
|
}
|
|
else {
|
|
/* last case, we have a mix between three */
|
|
weight.x = ((2.0f - limit)*N.x + (limit - 1.0f))/(2.0f*limit - 1.0f);
|
|
weight.y = ((2.0f - limit)*N.y + (limit - 1.0f))/(2.0f*limit - 1.0f);
|
|
weight.z = ((2.0f - limit)*N.z + (limit - 1.0f))/(2.0f*limit - 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
/* Desperate mode, no valid choice anyway, fallback to one side.*/
|
|
weight.x = 1.0f;
|
|
}
|
|
|
|
/* now fetch textures */
|
|
uint co_offset, out_offset, alpha_offset, srgb;
|
|
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
|
|
|
|
float3 co = stack_load_float3(stack, co_offset);
|
|
uint id = node.y;
|
|
|
|
float4 f = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
uint use_alpha = stack_valid(alpha_offset);
|
|
|
|
if(weight.x > 0.0f)
|
|
f += weight.x*svm_image_texture(kg, id, co.y, co.z, srgb, use_alpha);
|
|
if(weight.y > 0.0f)
|
|
f += weight.y*svm_image_texture(kg, id, co.x, co.z, srgb, use_alpha);
|
|
if(weight.z > 0.0f)
|
|
f += weight.z*svm_image_texture(kg, id, co.y, co.x, srgb, use_alpha);
|
|
|
|
if(stack_valid(out_offset))
|
|
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
|
|
if(stack_valid(alpha_offset))
|
|
stack_store_float(stack, alpha_offset, f.w);
|
|
}
|
|
|
|
|
|
ccl_device void svm_node_tex_environment(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
|
|
{
|
|
uint id = node.y;
|
|
uint co_offset, out_offset, alpha_offset, srgb;
|
|
uint projection = node.w;
|
|
|
|
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
|
|
|
|
float3 co = stack_load_float3(stack, co_offset);
|
|
float2 uv;
|
|
|
|
co = normalize(co);
|
|
|
|
if(projection == 0)
|
|
uv = direction_to_equirectangular(co);
|
|
else
|
|
uv = direction_to_mirrorball(co);
|
|
|
|
uint use_alpha = stack_valid(alpha_offset);
|
|
float4 f = svm_image_texture(kg, id, uv.x, uv.y, srgb, use_alpha);
|
|
|
|
if(stack_valid(out_offset))
|
|
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
|
|
if(stack_valid(alpha_offset))
|
|
stack_store_float(stack, alpha_offset, f.w);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|