blender/intern/cycles/render/camera.cpp
Sergey Sharybin 527d049c5c Cycles: Make camera-in-volume an official feature
This means it's no longer needed to enable experimental feature set in order to
have proper camera in volume support. And this also means if there's something
wrong going on, or if there's speed regression for cases when camera is obviously
not in the volume -- this issues are to be reported and handled in the regular
matter.

Happy blending!
2014-10-03 12:55:31 +06:00

392 lines
10 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#include "camera.h"
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "device.h"
#include "util_foreach.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
Camera::Camera()
{
shuttertime = 1.0f;
aperturesize = 0.0f;
focaldistance = 10.0f;
blades = 0;
bladesrotation = 0.0f;
matrix = transform_identity();
motion.pre = transform_identity();
motion.post = transform_identity();
use_motion = false;
aperture_ratio = 1.0f;
type = CAMERA_PERSPECTIVE;
panorama_type = PANORAMA_EQUIRECTANGULAR;
fisheye_fov = M_PI_F;
fisheye_lens = 10.5f;
fov = M_PI_4_F;
sensorwidth = 0.036f;
sensorheight = 0.024f;
nearclip = 1e-5f;
farclip = 1e5f;
width = 1024;
height = 512;
resolution = 1;
viewplane.left = -((float)width/(float)height);
viewplane.right = (float)width/(float)height;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
screentoworld = transform_identity();
rastertoworld = transform_identity();
ndctoworld = transform_identity();
rastertocamera = transform_identity();
cameratoworld = transform_identity();
worldtoraster = transform_identity();
dx = make_float3(0.0f, 0.0f, 0.0f);
dy = make_float3(0.0f, 0.0f, 0.0f);
need_update = true;
need_device_update = true;
previous_need_motion = -1;
}
Camera::~Camera()
{
}
void Camera::compute_auto_viewplane()
{
float aspect = (float)width/(float)height;
if(width >= height) {
viewplane.left = -aspect;
viewplane.right = aspect;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
}
else {
viewplane.left = -1.0f;
viewplane.right = 1.0f;
viewplane.bottom = -1.0f/aspect;
viewplane.top = 1.0f/aspect;
}
}
void Camera::update()
{
if(!need_update)
return;
/* ndc to raster */
Transform screentocamera;
Transform ndctoraster = transform_scale(width, height, 1.0f);
/* raster to screen */
Transform screentondc =
transform_scale(1.0f/(viewplane.right - viewplane.left),
1.0f/(viewplane.top - viewplane.bottom), 1.0f) *
transform_translate(-viewplane.left, -viewplane.bottom, 0.0f);
Transform screentoraster = ndctoraster * screentondc;
Transform rastertoscreen = transform_inverse(screentoraster);
/* screen to camera */
if(type == CAMERA_PERSPECTIVE)
screentocamera = transform_inverse(transform_perspective(fov, nearclip, farclip));
else if(type == CAMERA_ORTHOGRAPHIC)
screentocamera = transform_inverse(transform_orthographic(nearclip, farclip));
else
screentocamera = transform_identity();
Transform cameratoscreen = transform_inverse(screentocamera);
rastertocamera = screentocamera * rastertoscreen;
cameratoraster = screentoraster * cameratoscreen;
cameratoworld = matrix;
screentoworld = cameratoworld * screentocamera;
rastertoworld = cameratoworld * rastertocamera;
ndctoworld = rastertoworld * ndctoraster;
/* note we recompose matrices instead of taking inverses of the above, this
* is needed to avoid inverting near degenerate matrices that happen due to
* precision issues with large scenes */
worldtocamera = transform_inverse(matrix);
worldtoscreen = cameratoscreen * worldtocamera;
worldtondc = screentondc * worldtoscreen;
worldtoraster = ndctoraster * worldtondc;
/* differentials */
if(type == CAMERA_ORTHOGRAPHIC) {
dx = transform_direction(&rastertocamera, make_float3(1, 0, 0));
dy = transform_direction(&rastertocamera, make_float3(0, 1, 0));
}
else if(type == CAMERA_PERSPECTIVE) {
dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
}
else {
dx = make_float3(0, 0, 0);
dy = make_float3(0, 0, 0);
}
dx = transform_direction(&cameratoworld, dx);
dy = transform_direction(&cameratoworld, dy);
need_update = false;
need_device_update = true;
}
void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
update();
if (previous_need_motion != need_motion) {
/* scene's motion model could have been changed since previous device
* camera update this could happen for example in case when one render
* layer has got motion pass and another not */
need_device_update = true;
}
if(!need_device_update)
return;
KernelCamera *kcam = &dscene->data.cam;
/* store matrices */
kcam->screentoworld = screentoworld;
kcam->rastertoworld = rastertoworld;
kcam->rastertocamera = rastertocamera;
kcam->cameratoworld = cameratoworld;
kcam->worldtocamera = worldtocamera;
kcam->worldtoscreen = worldtoscreen;
kcam->worldtoraster = worldtoraster;
kcam->worldtondc = worldtondc;
/* camera motion */
kcam->have_motion = 0;
if(need_motion == Scene::MOTION_PASS) {
if(type == CAMERA_PANORAMA) {
if(use_motion) {
kcam->motion.pre = transform_inverse(motion.pre);
kcam->motion.post = transform_inverse(motion.post);
}
else {
kcam->motion.pre = kcam->worldtocamera;
kcam->motion.post = kcam->worldtocamera;
}
}
else {
if(use_motion) {
kcam->motion.pre = cameratoraster * transform_inverse(motion.pre);
kcam->motion.post = cameratoraster * transform_inverse(motion.post);
}
else {
kcam->motion.pre = worldtoraster;
kcam->motion.post = worldtoraster;
}
}
}
#ifdef __CAMERA_MOTION__
else if(need_motion == Scene::MOTION_BLUR) {
if(use_motion) {
transform_motion_decompose((DecompMotionTransform*)&kcam->motion, &motion, &matrix);
kcam->have_motion = 1;
}
}
#endif
/* depth of field */
kcam->aperturesize = aperturesize;
kcam->focaldistance = focaldistance;
kcam->blades = (blades < 3)? 0.0f: blades;
kcam->bladesrotation = bladesrotation;
/* motion blur */
#ifdef __CAMERA_MOTION__
kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: -1.0f;
#else
kcam->shuttertime = -1.0f;
#endif
/* type */
kcam->type = type;
/* anamorphic lens bokeh */
kcam->inv_aperture_ratio = 1.0f / aperture_ratio;
/* panorama */
kcam->panorama_type = panorama_type;
kcam->fisheye_fov = fisheye_fov;
kcam->fisheye_lens = fisheye_lens;
/* sensor size */
kcam->sensorwidth = sensorwidth;
kcam->sensorheight = sensorheight;
/* render size */
kcam->width = width;
kcam->height = height;
kcam->resolution = resolution;
/* store differentials */
kcam->dx = float3_to_float4(dx);
kcam->dy = float3_to_float4(dy);
/* clipping */
kcam->nearclip = nearclip;
kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip;
need_device_update = false;
previous_need_motion = need_motion;
/* Camera in volume. */
kcam->is_inside_volume = 0;
BoundBox viewplane_boundbox = viewplane_bounds_get();
for(size_t i = 0; i < scene->objects.size(); ++i) {
Object *object = scene->objects[i];
if(object->mesh->has_volume &&
viewplane_boundbox.intersects(object->bounds))
{
/* TODO(sergey): Consider adding more grained check. */
kcam->is_inside_volume = 1;
break;
}
}
}
void Camera::device_free(Device *device, DeviceScene *dscene)
{
/* nothing to free, only writing to constant memory */
}
bool Camera::modified(const Camera& cam)
{
return !((shuttertime == cam.shuttertime) &&
(aperturesize == cam.aperturesize) &&
(blades == cam.blades) &&
(bladesrotation == cam.bladesrotation) &&
(focaldistance == cam.focaldistance) &&
(type == cam.type) &&
(fov == cam.fov) &&
(nearclip == cam.nearclip) &&
(farclip == cam.farclip) &&
(sensorwidth == cam.sensorwidth) &&
(sensorheight == cam.sensorheight) &&
// modified for progressive render
// (width == cam.width) &&
// (height == cam.height) &&
(viewplane == cam.viewplane) &&
(border == cam.border) &&
(matrix == cam.matrix) &&
(aperture_ratio == cam.aperture_ratio) &&
(panorama_type == cam.panorama_type) &&
(fisheye_fov == cam.fisheye_fov) &&
(fisheye_lens == cam.fisheye_lens));
}
bool Camera::motion_modified(const Camera& cam)
{
return !((motion == cam.motion) &&
(use_motion == cam.use_motion));
}
void Camera::tag_update()
{
need_update = true;
}
float3 Camera::transform_raster_to_world(float raster_x, float raster_y)
{
float3 D, P;
if(type == CAMERA_PERSPECTIVE) {
D = transform_perspective(&rastertocamera,
make_float3(raster_x, raster_y, 0.0f));
P = make_float3(0.0f, 0.0f, 0.0f);
/* TODO(sergey): Aperture support? */
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
/* TODO(sergey): Clipping is conditional in kernel, and hence it could
* be mistakes in here, currently leading to wrong camera-in-volume
* detection.
*/
P += nearclip * D;
}
else if (type == CAMERA_ORTHOGRAPHIC) {
D = make_float3(0.0f, 0.0f, 1.0f);
/* TODO(sergey): Aperture support? */
P = transform_perspective(&rastertocamera,
make_float3(raster_x, raster_y, 0.0f));
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
}
else {
assert(!"unsupported camera type");
}
return P;
}
BoundBox Camera::viewplane_bounds_get()
{
/* TODO(sergey): This is all rather stupid, but is there a way to perform
* checks we need in a more clear and smart fasion?
*/
BoundBox bounds = BoundBox::empty;
if(type == CAMERA_PANORAMA) {
bounds.grow(make_float3(cameratoworld.w.x,
cameratoworld.w.y,
cameratoworld.w.z));
}
else {
bounds.grow(transform_raster_to_world(0.0f, 0.0f));
bounds.grow(transform_raster_to_world(0.0f, (float)height));
bounds.grow(transform_raster_to_world((float)width, (float)height));
bounds.grow(transform_raster_to_world((float)width, 0.0f));
if(type == CAMERA_PERSPECTIVE) {
/* Center point has the most distancei in local Z axis,
* use it to construct bounding box/
*/
bounds.grow(transform_raster_to_world(0.5f*width, 0.5f*height));
}
}
return bounds;
}
CCL_NAMESPACE_END