blender/extern/bullet/BulletDynamics/ConstraintSolver/JacobianEntry.h
Erwin Coumans feb4f51103 Added Bullet library.
Only windows projectfiles for now.
Will ask Hans to get unix makefiles done.
2005-07-16 09:58:01 +00:00

130 lines
4.1 KiB
C++

/*
* Copyright (c) 2005 Erwin Coumans http://www.erwincoumans.com
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#ifndef JACOBIAN_ENTRY_H
#define JACOBIAN_ENTRY_H
#include "SimdVector3.h"
#include "Dynamics/RigidBody.h"
//notes:
// Another memory optimization would be to store m_MbJ in the remaining 3 w components
// which makes the JacobianEntry memory layout 16 bytes
// if you only are interested in angular part, just feed massInvA and massInvB zero
/// Jacobian entry is an abstraction that allows to describe constraints
/// it can be used in combination with a constraint solver
/// Can be used to relate the effect of an impulse to the constraint error
class JacobianEntry
{
public:
JacobianEntry() {};
//constraint between two different rigidbodies
JacobianEntry(
const SimdMatrix3x3& world2A,
const SimdMatrix3x3& world2B,
const SimdVector3& rel_pos1,const SimdVector3& rel_pos2,
const SimdVector3& normal,
const SimdVector3& inertiaInvA,
const SimdScalar massInvA,
const SimdVector3& inertiaInvB,
const SimdScalar massInvB)
:m_normalAxis(normal)
{
m_aJ = world2A*(rel_pos1.cross(normal));
m_bJ = world2B*(rel_pos2.cross(normal));
m_MaJ = inertiaInvA * m_aJ;
m_MbJ = inertiaInvB * m_bJ;
m_jacDiagAB = massInvA + m_MaJ.dot(m_aJ) + massInvB + m_MbJ.dot(m_bJ);
}
//angular constraint between two different rigidbodies
JacobianEntry(const SimdVector3& normal,
const SimdMatrix3x3& world2A,
const SimdMatrix3x3& world2B,
const SimdVector3& inertiaInvA,
const SimdVector3& inertiaInvB)
:m_normalAxis(normal)
{
m_aJ= world2A*normal;
m_bJ = world2B*-normal;
m_MaJ = inertiaInvA * m_aJ;
m_MbJ = inertiaInvB * m_bJ;
m_jacDiagAB = m_MaJ.dot(m_aJ) + m_MbJ.dot(m_bJ);
}
//constraint on one rigidbody
JacobianEntry(
const SimdMatrix3x3& world2A,
const SimdVector3& rel_pos1,const SimdVector3& rel_pos2,
const SimdVector3& normal,
const SimdVector3& inertiaInvA,
const SimdScalar massInvA)
:m_normalAxis(normal)
{
m_aJ= world2A*(rel_pos1.cross(normal));
m_bJ = world2A*(rel_pos2.cross(normal));
m_MaJ = inertiaInvA * m_aJ;
m_MbJ = SimdVector3(0.f,0.f,0.f);
m_jacDiagAB = massInvA + m_MaJ.dot(m_aJ);
}
SimdScalar getDiagonal() const { return m_jacDiagAB; }
// for two constraints on the same rigidbody (for example vehicle friction)
SimdScalar getNonDiagonal(const JacobianEntry& jacB, const SimdScalar massInvA) const
{
const JacobianEntry& jacA = *this;
SimdScalar lin = massInvA * jacA.m_normalAxis.dot(jacB.m_normalAxis);
SimdScalar ang = jacA.m_MaJ.dot(jacB.m_aJ);
return lin + ang;
}
// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
SimdScalar getNonDiagonal(const JacobianEntry& jacB,const SimdScalar massInvA,const SimdScalar massInvB) const
{
const JacobianEntry& jacA = *this;
SimdVector3 lin = jacA.m_normalAxis * jacB.m_normalAxis;
SimdVector3 ang0 = jacA.m_MaJ * jacB.m_aJ;
SimdVector3 ang1 = jacA.m_MbJ * jacB.m_bJ;
SimdVector3 lin0 = massInvA * lin ;
SimdVector3 lin1 = massInvB * lin;
SimdVector3 sum = ang0+ang1+lin0+lin1;
return sum[0]+sum[1]+sum[2];
}
SimdScalar getRelativeVelocity(const SimdVector3& linvelA,const SimdVector3& angvelA,const SimdVector3& linvelB,const SimdVector3& angvelB)
{
SimdVector3 linrel = linvelA - linvelB;
SimdVector3 angvela = angvelA * m_aJ;
SimdVector3 angvelb = angvelB * m_bJ;
linrel *= m_normalAxis;
angvela += angvelb;
angvela += linrel;
SimdScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
return rel_vel2 + SIMD_EPSILON;
}
//private:
SimdVector3 m_normalAxis;
SimdVector3 m_aJ;
SimdVector3 m_bJ;
SimdVector3 m_MaJ;
SimdVector3 m_MbJ;
//Optimization: can be stored in the w/last component of one of the vectors
SimdScalar m_jacDiagAB;
};
#endif //JACOBIAN_ENTRY_H