blender/intern/cycles/render/film.cpp
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

512 lines
13 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/camera.h"
#include "device/device.h"
#include "render/film.h"
#include "render/integrator.h"
#include "render/mesh.h"
#include "render/scene.h"
#include "render/tables.h"
#include "util/util_algorithm.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_math.h"
#include "util/util_math_cdf.h"
CCL_NAMESPACE_BEGIN
/* Pass */
static bool compare_pass_order(const Pass& a, const Pass& b)
{
if(a.components == b.components)
return (a.type < b.type);
return (a.components > b.components);
}
void Pass::add(PassType type, array<Pass>& passes)
{
for(size_t i = 0; i < passes.size(); i++)
if(passes[i].type == type)
return;
Pass pass;
pass.type = type;
pass.filter = true;
pass.exposure = false;
pass.divide_type = PASS_NONE;
switch(type) {
case PASS_NONE:
pass.components = 0;
break;
case PASS_COMBINED:
pass.components = 4;
pass.exposure = true;
break;
case PASS_DEPTH:
pass.components = 1;
pass.filter = false;
break;
case PASS_MIST:
pass.components = 1;
break;
case PASS_NORMAL:
pass.components = 4;
break;
case PASS_UV:
pass.components = 4;
break;
case PASS_MOTION:
pass.components = 4;
pass.divide_type = PASS_MOTION_WEIGHT;
break;
case PASS_MOTION_WEIGHT:
pass.components = 1;
break;
case PASS_OBJECT_ID:
case PASS_MATERIAL_ID:
pass.components = 1;
pass.filter = false;
break;
case PASS_DIFFUSE_COLOR:
case PASS_GLOSSY_COLOR:
case PASS_TRANSMISSION_COLOR:
case PASS_SUBSURFACE_COLOR:
pass.components = 4;
break;
case PASS_DIFFUSE_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_DIFFUSE_COLOR;
break;
case PASS_GLOSSY_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_GLOSSY_COLOR;
break;
case PASS_TRANSMISSION_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_TRANSMISSION_COLOR;
break;
case PASS_SUBSURFACE_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_SUBSURFACE_COLOR;
break;
case PASS_DIFFUSE_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_DIFFUSE_COLOR;
break;
case PASS_GLOSSY_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_GLOSSY_COLOR;
break;
case PASS_TRANSMISSION_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_TRANSMISSION_COLOR;
break;
case PASS_SUBSURFACE_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_SUBSURFACE_COLOR;
break;
case PASS_EMISSION:
case PASS_BACKGROUND:
pass.components = 4;
pass.exposure = true;
break;
case PASS_AO:
pass.components = 4;
break;
case PASS_SHADOW:
pass.components = 4;
pass.exposure = false;
break;
case PASS_LIGHT:
/* This isn't a real pass, used by baking to see whether
* light data is needed or not.
*
* Set components to 0 so pass sort below happens in a
* determined way.
*/
pass.components = 0;
break;
#ifdef WITH_CYCLES_DEBUG
case PASS_BVH_TRAVERSED_NODES:
case PASS_BVH_TRAVERSED_INSTANCES:
case PASS_BVH_INTERSECTIONS:
case PASS_RAY_BOUNCES:
pass.components = 1;
pass.exposure = false;
break;
#endif
}
passes.push_back_slow(pass);
/* order from by components, to ensure alignment so passes with size 4
* come first and then passes with size 1 */
sort(&passes[0], &passes[0] + passes.size(), compare_pass_order);
if(pass.divide_type != PASS_NONE)
Pass::add(pass.divide_type, passes);
}
bool Pass::equals(const array<Pass>& A, const array<Pass>& B)
{
if(A.size() != B.size())
return false;
for(int i = 0; i < A.size(); i++)
if(A[i].type != B[i].type)
return false;
return true;
}
bool Pass::contains(const array<Pass>& passes, PassType type)
{
for(size_t i = 0; i < passes.size(); i++)
if(passes[i].type == type)
return true;
return false;
}
/* Pixel Filter */
static float filter_func_box(float /*v*/, float /*width*/)
{
return 1.0f;
}
static float filter_func_gaussian(float v, float width)
{
v *= 6.0f/width;
return expf(-2.0f*v*v);
}
static float filter_func_blackman_harris(float v, float width)
{
v = M_2PI_F * (v / width + 0.5f);
return 0.35875f - 0.48829f*cosf(v) + 0.14128f*cosf(2.0f*v) - 0.01168f*cosf(3.0f*v);
}
static vector<float> filter_table(FilterType type, float width)
{
vector<float> filter_table(FILTER_TABLE_SIZE);
float (*filter_func)(float, float) = NULL;
switch(type) {
case FILTER_BOX:
filter_func = filter_func_box;
break;
case FILTER_GAUSSIAN:
filter_func = filter_func_gaussian;
width *= 3.0f;
break;
case FILTER_BLACKMAN_HARRIS:
filter_func = filter_func_blackman_harris;
width *= 2.0f;
break;
default:
assert(0);
}
/* Create importance sampling table. */
/* TODO(sergey): With the even filter table size resolution we can not
* really make it nice symmetric importance map without sampling full range
* (meaning, we would need to sample full filter range and not use the
* make_symmetric argument).
*
* Current code matches exactly initial filter table code, but we should
* consider either making FILTER_TABLE_SIZE odd value or sample full filter.
*/
util_cdf_inverted(FILTER_TABLE_SIZE,
0.0f,
width * 0.5f,
function_bind(filter_func, _1, width),
true,
filter_table);
return filter_table;
}
/* Film */
NODE_DEFINE(Film)
{
NodeType* type = NodeType::add("film", create);
SOCKET_FLOAT(exposure, "Exposure", 0.8f);
SOCKET_FLOAT(pass_alpha_threshold, "Pass Alpha Threshold", 0.5f);
static NodeEnum filter_enum;
filter_enum.insert("box", FILTER_BOX);
filter_enum.insert("gaussian", FILTER_GAUSSIAN);
filter_enum.insert("blackman_harris", FILTER_BLACKMAN_HARRIS);
SOCKET_ENUM(filter_type, "Filter Type", filter_enum, FILTER_BOX);
SOCKET_FLOAT(filter_width, "Filter Width", 1.0f);
SOCKET_FLOAT(mist_start, "Mist Start", 0.0f);
SOCKET_FLOAT(mist_depth, "Mist Depth", 100.0f);
SOCKET_FLOAT(mist_falloff, "Mist Falloff", 1.0f);
SOCKET_BOOLEAN(use_sample_clamp, "Use Sample Clamp", false);
SOCKET_BOOLEAN(denoising_data_pass, "Generate Denoising Data Pass", false);
SOCKET_BOOLEAN(denoising_clean_pass, "Generate Denoising Clean Pass", false);
SOCKET_INT(denoising_flags, "Denoising Flags", 0);
return type;
}
Film::Film()
: Node(node_type)
{
Pass::add(PASS_COMBINED, passes);
use_light_visibility = false;
filter_table_offset = TABLE_OFFSET_INVALID;
need_update = true;
}
Film::~Film()
{
}
void Film::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
if(!need_update)
return;
device_free(device, dscene, scene);
KernelFilm *kfilm = &dscene->data.film;
/* update __data */
kfilm->exposure = exposure;
kfilm->pass_flag = 0;
kfilm->pass_stride = 0;
kfilm->use_light_pass = use_light_visibility || use_sample_clamp;
for(size_t i = 0; i < passes.size(); i++) {
Pass& pass = passes[i];
kfilm->pass_flag |= pass.type;
switch(pass.type) {
case PASS_COMBINED:
kfilm->pass_combined = kfilm->pass_stride;
break;
case PASS_DEPTH:
kfilm->pass_depth = kfilm->pass_stride;
break;
case PASS_MIST:
kfilm->pass_mist = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_NORMAL:
kfilm->pass_normal = kfilm->pass_stride;
break;
case PASS_UV:
kfilm->pass_uv = kfilm->pass_stride;
break;
case PASS_MOTION:
kfilm->pass_motion = kfilm->pass_stride;
break;
case PASS_MOTION_WEIGHT:
kfilm->pass_motion_weight = kfilm->pass_stride;
break;
case PASS_OBJECT_ID:
kfilm->pass_object_id = kfilm->pass_stride;
break;
case PASS_MATERIAL_ID:
kfilm->pass_material_id = kfilm->pass_stride;
break;
case PASS_DIFFUSE_COLOR:
kfilm->pass_diffuse_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_GLOSSY_COLOR:
kfilm->pass_glossy_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_TRANSMISSION_COLOR:
kfilm->pass_transmission_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SUBSURFACE_COLOR:
kfilm->pass_subsurface_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_DIFFUSE_INDIRECT:
kfilm->pass_diffuse_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_GLOSSY_INDIRECT:
kfilm->pass_glossy_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_TRANSMISSION_INDIRECT:
kfilm->pass_transmission_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SUBSURFACE_INDIRECT:
kfilm->pass_subsurface_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_DIFFUSE_DIRECT:
kfilm->pass_diffuse_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_GLOSSY_DIRECT:
kfilm->pass_glossy_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_TRANSMISSION_DIRECT:
kfilm->pass_transmission_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SUBSURFACE_DIRECT:
kfilm->pass_subsurface_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_EMISSION:
kfilm->pass_emission = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_BACKGROUND:
kfilm->pass_background = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_AO:
kfilm->pass_ao = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SHADOW:
kfilm->pass_shadow = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_LIGHT:
kfilm->use_light_pass = 1;
break;
#ifdef WITH_CYCLES_DEBUG
case PASS_BVH_TRAVERSED_NODES:
kfilm->pass_bvh_traversed_nodes = kfilm->pass_stride;
break;
case PASS_BVH_TRAVERSED_INSTANCES:
kfilm->pass_bvh_traversed_instances = kfilm->pass_stride;
break;
case PASS_BVH_INTERSECTIONS:
kfilm->pass_bvh_intersections = kfilm->pass_stride;
break;
case PASS_RAY_BOUNCES:
kfilm->pass_ray_bounces = kfilm->pass_stride;
break;
#endif
case PASS_NONE:
break;
}
kfilm->pass_stride += pass.components;
}
kfilm->pass_denoising_data = 0;
kfilm->pass_denoising_clean = 0;
kfilm->denoising_flags = 0;
if(denoising_data_pass) {
kfilm->pass_denoising_data = kfilm->pass_stride;
kfilm->pass_stride += DENOISING_PASS_SIZE_BASE;
kfilm->denoising_flags = denoising_flags;
if(denoising_clean_pass) {
kfilm->pass_denoising_clean = kfilm->pass_stride;
kfilm->pass_stride += DENOISING_PASS_SIZE_CLEAN;
kfilm->use_light_pass = 1;
}
}
kfilm->pass_stride = align_up(kfilm->pass_stride, 4);
kfilm->pass_alpha_threshold = pass_alpha_threshold;
/* update filter table */
vector<float> table = filter_table(filter_type, filter_width);
scene->lookup_tables->remove_table(&filter_table_offset);
filter_table_offset = scene->lookup_tables->add_table(dscene, table);
kfilm->filter_table_offset = (int)filter_table_offset;
/* mist pass parameters */
kfilm->mist_start = mist_start;
kfilm->mist_inv_depth = (mist_depth > 0.0f)? 1.0f/mist_depth: 0.0f;
kfilm->mist_falloff = mist_falloff;
pass_stride = kfilm->pass_stride;
denoising_data_offset = kfilm->pass_denoising_data;
denoising_clean_offset = kfilm->pass_denoising_clean;
need_update = false;
}
void Film::device_free(Device * /*device*/,
DeviceScene * /*dscene*/,
Scene *scene)
{
scene->lookup_tables->remove_table(&filter_table_offset);
}
bool Film::modified(const Film& film)
{
return !Node::equals(film) || !Pass::equals(passes, film.passes);
}
void Film::tag_passes_update(Scene *scene, const array<Pass>& passes_)
{
if(Pass::contains(passes, PASS_UV) != Pass::contains(passes_, PASS_UV)) {
scene->mesh_manager->tag_update(scene);
foreach(Shader *shader, scene->shaders)
shader->need_update_attributes = true;
}
else if(Pass::contains(passes, PASS_MOTION) != Pass::contains(passes_, PASS_MOTION))
scene->mesh_manager->tag_update(scene);
passes = passes_;
}
void Film::tag_update(Scene * /*scene*/)
{
need_update = true;
}
CCL_NAMESPACE_END