blender/intern/cycles/kernel/closure/bssrdf.h
Brecht Van Lommel b314209356 Cycles: add a sharpness input to the Cubic SSS falloff. When set to 1 this will
give a result more similar to the Compatible falloff option. The scale is x2
though to keep the perceived scatter radius roughly the same while changing the
sharpness. Difference with compatible will be mainly on non-flat geometry.
2013-09-03 22:39:17 +00:00

249 lines
6.2 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#ifndef __KERNEL_BSSRDF_H__
#define __KERNEL_BSSRDF_H__
CCL_NAMESPACE_BEGIN
__device int bssrdf_setup(ShaderClosure *sc, ClosureType type)
{
if(sc->data0 < BSSRDF_MIN_RADIUS) {
/* revert to diffuse BSDF if radius too small */
sc->data0 = 0.0f;
sc->data1 = 0.0f;
int flag = bsdf_diffuse_setup(sc);
sc->type = CLOSURE_BSDF_BSSRDF_ID;
return flag;
}
else {
sc->data1 = clamp(sc->data1, 0.0f, 1.0f); /* texture blur */
sc->T.x = clamp(sc->T.x, 0.0f, 1.0f); /* sharpness */
sc->type = type;
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF;
}
}
/* Planar Truncated Gaussian
*
* Note how this is different from the typical gaussian, this one integrates
* to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
* that integrating x*exp(-x) gives a nice closed form solution. */
/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
#define GAUSS_TRUNCATE 12.46f
__device float bssrdf_gaussian_eval(ShaderClosure *sc, float r)
{
/* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
* = 1 - exp(-Rm*Rm/(2*v)) */
const float v = sc->data0*sc->data0*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
if(r >= Rm)
return 0.0f;
return expf(-r*r/(2.0f*v))/(2.0f*M_PI_F*v);
}
__device float bssrdf_gaussian_pdf(ShaderClosure *sc, float r)
{
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
return bssrdf_gaussian_eval(sc, r) * (1.0f/(area_truncated));
}
__device void bssrdf_gaussian_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
* r = sqrt(-2*v*logf(xi)) */
const float v = sc->data0*sc->data0*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
/* r(xi) */
const float r_squared = -2.0f*v*logf(1.0f - xi*area_truncated);
*r = sqrtf(r_squared);
/* h^2 + r^2 = Rm^2 */
*h = sqrtf(Rm*Rm - r_squared);
}
/* Planar Cubic BSSRDF falloff
*
* This is basically (Rm - x)^3, with some factors to normalize it. For sampling
* we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
* far as I can tell has no closed form solution. So we get an iterative solution
* instead with newton-raphson. */
__device float bssrdf_cubic_eval(ShaderClosure *sc, float r)
{
const float sharpness = sc->T.x;
if(sharpness == 0.0f) {
const float Rm = sc->data0;
if(r >= Rm)
return 0.0f;
/* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
const float Rm5 = (Rm*Rm) * (Rm*Rm) * Rm;
const float f = Rm - r;
const float num = f*f*f;
return (10.0f * num) / (Rm5 * M_PI_F);
}
else {
float Rm = sc->data0*(1.0f + sharpness);
if(r >= Rm)
return 0.0f;
/* custom variation with extra sharpness, to match the previous code */
const float y = 1.0f/(1.0f + sharpness);
float Rmy, ry, ryinv;
if(sharpness == 1.0f) {
Rmy = sqrtf(Rm);
ry = sqrtf(r);
ryinv = (ry > 0.0f)? 1.0f/ry: 0.0f;
}
else {
Rmy = powf(Rm, y);
ry = powf(r, y);
ryinv = (r > 0.0f)? powf(r, 2.0f*y - 2.0f): 0.0f;
}
const float Rmy5 = (Rmy*Rmy) * (Rmy*Rmy) * Rmy;
const float f = Rmy - ry;
const float num = f*(f*f)*(y*ryinv);
return (10.0f * num) / (Rmy5 * M_PI_F);
}
}
__device float bssrdf_cubic_pdf(ShaderClosure *sc, float r)
{
return bssrdf_cubic_eval(sc, r);
}
/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
__device float bssrdf_cubic_quintic_root_find(float xi)
{
/* newton-raphson iteration, usually succeeds in 2-4 iterations, except
* outside 0.02 ... 0.98 where it can go up to 10, so overall performance
* should not be too bad */
const float tolerance = 1e-6f;
const int max_iteration_count = 10;
float x = 0.25f;
int i;
for (i = 0; i < max_iteration_count; i++) {
float x2 = x*x;
float x3 = x2*x;
float nx = (1.0f - x);
float f = 10.0f*x2 - 20.0f*x3 + 15.0f*x2*x2 - 4.0f*x2*x3 - xi;
float f_ = 20.0f*(x*nx)*(nx*nx);
if(fabsf(f) < tolerance || f_ == 0.0f)
break;
x = clamp(x - f/f_, 0.0f, 1.0f);
}
return x;
}
__device void bssrdf_cubic_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
float Rm = sc->data0;
float r_ = bssrdf_cubic_quintic_root_find(xi);
const float sharpness = sc->T.x;
if(sharpness != 0.0f) {
r_ = powf(r_, 1.0f + sharpness);
Rm *= (1.0f + sharpness);
}
r_ *= Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = sqrtf(Rm*Rm - r_*r_);
}
/* None BSSRDF falloff
*
* Samples distributed over disk with no falloff, for reference. */
__device float bssrdf_none_eval(ShaderClosure *sc, float r)
{
const float Rm = sc->data0;
return (r < Rm)? 1.0f: 0.0f;
}
__device float bssrdf_none_pdf(ShaderClosure *sc, float r)
{
/* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
const float Rm = sc->data0;
const float area = (M_PI_F*Rm*Rm);
return bssrdf_none_eval(sc, r) / area;
}
__device void bssrdf_none_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
* r = sqrt(xi)*Rm */
const float Rm = sc->data0;
const float r_ = sqrtf(xi)*Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = sqrtf(Rm*Rm - r_*r_);
}
/* Generic */
__device void bssrdf_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
bssrdf_cubic_sample(sc, xi, r, h);
else
bssrdf_gaussian_sample(sc, xi, r, h);
}
__device float bssrdf_pdf(ShaderClosure *sc, float r)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
return bssrdf_cubic_pdf(sc, r);
else
return bssrdf_gaussian_pdf(sc, r);
}
CCL_NAMESPACE_END
#endif /* __KERNEL_BSSRDF_H__ */