blender/intern/cycles/render/object.cpp
Lukas Stockner 47c77cd89c Cycles: Write Cryptomatte metadata according to the specification
Reviewers: brecht, sergey, swerner

Subscribers: creamsurfer, Tanguy, Noss, SteffenD

Differential Revision: https://developer.blender.org/D3862
2018-11-08 01:07:54 +01:00

882 lines
25 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/camera.h"
#include "device/device.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/curves.h"
#include "render/object.h"
#include "render/particles.h"
#include "render/scene.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_progress.h"
#include "util/util_set.h"
#include "util/util_vector.h"
#include "util/util_murmurhash.h"
#include "subd/subd_patch_table.h"
CCL_NAMESPACE_BEGIN
/* Global state of object transform update. */
struct UpdateObjectTransformState {
/* Global state used by device_update_object_transform().
* Common for both threaded and non-threaded update.
*/
/* Type of the motion required by the scene settings. */
Scene::MotionType need_motion;
/* Mapping from particle system to a index in packed particle array.
* Only used for read.
*/
map<ParticleSystem*, int> particle_offset;
/* Mesh area.
* Used to avoid calculation of mesh area multiple times. Used for both
* read and write. Acquire surface_area_lock to keep it all thread safe.
*/
map<Mesh*, float> surface_area_map;
/* Motion offsets for each object. */
array<uint> motion_offset;
/* Packed object arrays. Those will be filled in. */
uint *object_flag;
KernelObject *objects;
Transform *object_motion_pass;
DecomposedTransform *object_motion;
/* Flags which will be synchronized to Integrator. */
bool have_motion;
bool have_curves;
/* ** Scheduling queue. ** */
Scene *scene;
/* Some locks to keep everything thread-safe. */
thread_spin_lock queue_lock;
thread_spin_lock surface_area_lock;
/* First unused object index in the queue. */
int queue_start_object;
};
/* Object */
NODE_DEFINE(Object)
{
NodeType* type = NodeType::add("object", create);
SOCKET_NODE(mesh, "Mesh", &Mesh::node_type);
SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
SOCKET_UINT(visibility, "Visibility", ~0);
SOCKET_UINT(random_id, "Random ID", 0);
SOCKET_INT(pass_id, "Pass ID", 0);
SOCKET_BOOLEAN(use_holdout, "Use Holdout", false);
SOCKET_BOOLEAN(hide_on_missing_motion, "Hide on Missing Motion", false);
SOCKET_POINT(dupli_generated, "Dupli Generated", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_POINT2(dupli_uv, "Dupli UV", make_float2(0.0f, 0.0f));
SOCKET_TRANSFORM_ARRAY(motion, "Motion", array<Transform>());
SOCKET_BOOLEAN(is_shadow_catcher, "Shadow Catcher", false);
return type;
}
Object::Object()
: Node(node_type)
{
particle_system = NULL;
particle_index = 0;
bounds = BoundBox::empty;
}
Object::~Object()
{
}
void Object::update_motion()
{
if(!use_motion()) {
return;
}
bool have_motion = false;
for(size_t i = 0; i < motion.size(); i++) {
if(motion[i] == transform_empty()) {
if(hide_on_missing_motion) {
/* Hide objects that have no valid previous or next
* transform, for example particle that stop existing. It
* would be better to handle this in the kernel and make
* objects invisible outside certain motion steps. */
tfm = transform_empty();
motion.clear();
return;
}
else {
/* Otherwise just copy center motion. */
motion[i] = tfm;
}
}
/* Test if any of the transforms are actually different. */
have_motion = have_motion || motion[i] != tfm;
}
/* Clear motion array if there is no actual motion. */
if(!have_motion) {
motion.clear();
}
}
void Object::compute_bounds(bool motion_blur)
{
BoundBox mbounds = mesh->bounds;
if(motion_blur && use_motion()) {
array<DecomposedTransform> decomp(motion.size());
transform_motion_decompose(decomp.data(), motion.data(), motion.size());
bounds = BoundBox::empty;
/* todo: this is really terrible. according to pbrt there is a better
* way to find this iteratively, but did not find implementation yet
* or try to implement myself */
for(float t = 0.0f; t < 1.0f; t += (1.0f/128.0f)) {
Transform ttfm;
transform_motion_array_interpolate(&ttfm, decomp.data(), motion.size(), t);
bounds.grow(mbounds.transformed(&ttfm));
}
}
else {
/* No motion blur case. */
if(mesh->transform_applied) {
bounds = mbounds;
}
else {
bounds = mbounds.transformed(&tfm);
}
}
}
void Object::apply_transform(bool apply_to_motion)
{
if(!mesh || tfm == transform_identity())
return;
/* triangles */
if(mesh->verts.size()) {
/* store matrix to transform later. when accessing these as attributes we
* do not want the transform to be applied for consistency between static
* and dynamic BVH, so we do it on packing. */
mesh->transform_normal = transform_transposed_inverse(tfm);
/* apply to mesh vertices */
for(size_t i = 0; i < mesh->verts.size(); i++)
mesh->verts[i] = transform_point(&tfm, mesh->verts[i]);
if(apply_to_motion) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t steps_size = mesh->verts.size() * (mesh->motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
vert_steps[i] = transform_point(&tfm, vert_steps[i]);
}
Attribute *attr_N = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if(attr_N) {
Transform ntfm = mesh->transform_normal;
size_t steps_size = mesh->verts.size() * (mesh->motion_steps - 1);
float3 *normal_steps = attr_N->data_float3();
for(size_t i = 0; i < steps_size; i++)
normal_steps[i] = normalize(transform_direction(&ntfm, normal_steps[i]));
}
}
}
/* curves */
if(mesh->curve_keys.size()) {
/* compute uniform scale */
float3 c0 = transform_get_column(&tfm, 0);
float3 c1 = transform_get_column(&tfm, 1);
float3 c2 = transform_get_column(&tfm, 2);
float scalar = powf(fabsf(dot(cross(c0, c1), c2)), 1.0f/3.0f);
/* apply transform to curve keys */
for(size_t i = 0; i < mesh->curve_keys.size(); i++) {
float3 co = transform_point(&tfm, mesh->curve_keys[i]);
float radius = mesh->curve_radius[i] * scalar;
/* scale for curve radius is only correct for uniform scale */
mesh->curve_keys[i] = co;
mesh->curve_radius[i] = radius;
}
if(apply_to_motion) {
Attribute *curve_attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(curve_attr) {
/* apply transform to motion curve keys */
size_t steps_size = mesh->curve_keys.size() * (mesh->motion_steps - 1);
float4 *key_steps = curve_attr->data_float4();
for(size_t i = 0; i < steps_size; i++) {
float3 co = transform_point(&tfm, float4_to_float3(key_steps[i]));
float radius = key_steps[i].w * scalar;
/* scale for curve radius is only correct for uniform scale */
key_steps[i] = float3_to_float4(co);
key_steps[i].w = radius;
}
}
}
}
/* we keep normals pointing in same direction on negative scale, notify
* mesh about this in it (re)calculates normals */
if(transform_negative_scale(tfm))
mesh->transform_negative_scaled = true;
if(bounds.valid()) {
mesh->compute_bounds();
compute_bounds(false);
}
/* tfm is not reset to identity, all code that uses it needs to check the
* transform_applied boolean */
}
void Object::tag_update(Scene *scene)
{
if(mesh) {
if(mesh->transform_applied)
mesh->need_update = true;
foreach(Shader *shader, mesh->used_shaders) {
if(shader->use_mis && shader->has_surface_emission)
scene->light_manager->need_update = true;
}
}
scene->camera->need_flags_update = true;
scene->curve_system_manager->need_update = true;
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
bool Object::use_motion() const
{
return (motion.size() > 1);
}
float Object::motion_time(int step) const
{
return (use_motion()) ? 2.0f * step / (motion.size() - 1) - 1.0f : 0.0f;
}
int Object::motion_step(float time) const
{
if(use_motion()) {
for(size_t step = 0; step < motion.size(); step++) {
if(time == motion_time(step)) {
return step;
}
}
}
return -1;
}
bool Object::is_traceable() const
{
/* Mesh itself can be empty,can skip all such objects. */
if(!bounds.valid() || bounds.size() == make_float3(0.0f, 0.0f, 0.0f)) {
return false;
}
/* TODO(sergey): Check for mesh vertices/curves. visibility flags. */
return true;
}
uint Object::visibility_for_tracing() const {
uint trace_visibility = visibility;
if(is_shadow_catcher) {
trace_visibility &= ~PATH_RAY_SHADOW_NON_CATCHER;
}
else {
trace_visibility &= ~PATH_RAY_SHADOW_CATCHER;
}
return trace_visibility;
}
/* Object Manager */
ObjectManager::ObjectManager()
{
need_update = true;
need_flags_update = true;
}
ObjectManager::~ObjectManager()
{
}
void ObjectManager::device_update_object_transform(UpdateObjectTransformState *state,
Object *ob,
int object_index)
{
KernelObject& kobject = state->objects[object_index];
Transform *object_motion_pass = state->object_motion_pass;
Mesh *mesh = ob->mesh;
uint flag = 0;
/* Compute transformations. */
Transform tfm = ob->tfm;
Transform itfm = transform_inverse(tfm);
/* Compute surface area. for uniform scale we can do avoid the many
* transform calls and share computation for instances.
*
* TODO(brecht): Correct for displacement, and move to a better place.
*/
float uniform_scale;
float surface_area = 0.0f;
float pass_id = ob->pass_id;
float random_number = (float)ob->random_id * (1.0f/(float)0xFFFFFFFF);
int particle_index = (ob->particle_system)
? ob->particle_index + state->particle_offset[ob->particle_system]
: 0;
if(transform_uniform_scale(tfm, uniform_scale)) {
map<Mesh*, float>::iterator it;
/* NOTE: This isn't fully optimal and could in theory lead to multiple
* threads calculating area of the same mesh in parallel. However, this
* also prevents suspending all the threads when some mesh's area is
* not yet known.
*/
state->surface_area_lock.lock();
it = state->surface_area_map.find(mesh);
state->surface_area_lock.unlock();
if(it == state->surface_area_map.end()) {
size_t num_triangles = mesh->num_triangles();
for(size_t j = 0; j < num_triangles; j++) {
Mesh::Triangle t = mesh->get_triangle(j);
float3 p1 = mesh->verts[t.v[0]];
float3 p2 = mesh->verts[t.v[1]];
float3 p3 = mesh->verts[t.v[2]];
surface_area += triangle_area(p1, p2, p3);
}
state->surface_area_lock.lock();
state->surface_area_map[mesh] = surface_area;
state->surface_area_lock.unlock();
}
else {
surface_area = it->second;
}
surface_area *= uniform_scale;
}
else {
size_t num_triangles = mesh->num_triangles();
for(size_t j = 0; j < num_triangles; j++) {
Mesh::Triangle t = mesh->get_triangle(j);
float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]);
float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]);
float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]);
surface_area += triangle_area(p1, p2, p3);
}
}
kobject.tfm = tfm;
kobject.itfm = itfm;
kobject.surface_area = surface_area;
kobject.pass_id = pass_id;
kobject.random_number = random_number;
kobject.particle_index = particle_index;
kobject.motion_offset = 0;
if(mesh->use_motion_blur) {
state->have_motion = true;
}
if(mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)) {
flag |= SD_OBJECT_HAS_VERTEX_MOTION;
}
if(state->need_motion == Scene::MOTION_PASS) {
/* Clear motion array if there is no actual motion. */
ob->update_motion();
/* Compute motion transforms. */
Transform tfm_pre, tfm_post;
if(ob->use_motion()) {
tfm_pre = ob->motion[0];
tfm_post = ob->motion[ob->motion.size() - 1];
}
else {
tfm_pre = tfm;
tfm_post = tfm;
}
/* Motion transformations, is world/object space depending if mesh
* comes with deformed position in object space, or if we transform
* the shading point in world space. */
if(!mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)) {
tfm_pre = tfm_pre * itfm;
tfm_post = tfm_post * itfm;
}
int motion_pass_offset = object_index*OBJECT_MOTION_PASS_SIZE;
object_motion_pass[motion_pass_offset + 0] = tfm_pre;
object_motion_pass[motion_pass_offset + 1] = tfm_post;
}
else if(state->need_motion == Scene::MOTION_BLUR) {
if(ob->use_motion()) {
kobject.motion_offset = state->motion_offset[object_index];
/* Decompose transforms for interpolation. */
DecomposedTransform *decomp = state->object_motion + kobject.motion_offset;
transform_motion_decompose(decomp, ob->motion.data(), ob->motion.size());
flag |= SD_OBJECT_MOTION;
state->have_motion = true;
}
}
/* Dupli object coords and motion info. */
kobject.dupli_generated[0] = ob->dupli_generated[0];
kobject.dupli_generated[1] = ob->dupli_generated[1];
kobject.dupli_generated[2] = ob->dupli_generated[2];
kobject.numkeys = mesh->curve_keys.size();
kobject.dupli_uv[0] = ob->dupli_uv[0];
kobject.dupli_uv[1] = ob->dupli_uv[1];
int totalsteps = mesh->motion_steps;
kobject.numsteps = (totalsteps - 1)/2;
kobject.numverts = mesh->verts.size();
kobject.patch_map_offset = 0;
kobject.attribute_map_offset = 0;
uint32_t hash_name = util_murmur_hash3(ob->name.c_str(), ob->name.length(), 0);
uint32_t hash_asset = util_murmur_hash3(ob->asset_name.c_str(), ob->asset_name.length(), 0);
kobject.cryptomatte_object = util_hash_to_float(hash_name);
kobject.cryptomatte_asset = util_hash_to_float(hash_asset);
/* Object flag. */
if(ob->use_holdout) {
flag |= SD_OBJECT_HOLDOUT_MASK;
}
state->object_flag[object_index] = flag;
/* Have curves. */
if(mesh->num_curves()) {
state->have_curves = true;
}
}
bool ObjectManager::device_update_object_transform_pop_work(
UpdateObjectTransformState *state,
int *start_index,
int *num_objects)
{
/* Tweakable parameter, number of objects per chunk.
* Too small value will cause some extra overhead due to spin lock,
* too big value might not use all threads nicely.
*/
static const int OBJECTS_PER_TASK = 32;
bool have_work = false;
state->queue_lock.lock();
int num_scene_objects = state->scene->objects.size();
if(state->queue_start_object < num_scene_objects) {
int count = min(OBJECTS_PER_TASK,
num_scene_objects - state->queue_start_object);
*start_index = state->queue_start_object;
*num_objects = count;
state->queue_start_object += count;
have_work = true;
}
state->queue_lock.unlock();
return have_work;
}
void ObjectManager::device_update_object_transform_task(
UpdateObjectTransformState *state)
{
int start_index, num_objects;
while(device_update_object_transform_pop_work(state,
&start_index,
&num_objects))
{
for(int i = 0; i < num_objects; ++i) {
const int object_index = start_index + i;
Object *ob = state->scene->objects[object_index];
device_update_object_transform(state, ob, object_index);
}
}
}
void ObjectManager::device_update_transforms(DeviceScene *dscene,
Scene *scene,
Progress& progress)
{
UpdateObjectTransformState state;
state.need_motion = scene->need_motion();
state.have_motion = false;
state.have_curves = false;
state.scene = scene;
state.queue_start_object = 0;
state.objects = dscene->objects.alloc(scene->objects.size());
state.object_flag = dscene->object_flag.alloc(scene->objects.size());
state.object_motion = NULL;
state.object_motion_pass = NULL;
if(state.need_motion == Scene::MOTION_PASS) {
state.object_motion_pass = dscene->object_motion_pass.alloc(OBJECT_MOTION_PASS_SIZE*scene->objects.size());
}
else if(state.need_motion == Scene::MOTION_BLUR) {
/* Set object offsets into global object motion array. */
uint *motion_offsets = state.motion_offset.resize(scene->objects.size());
uint motion_offset = 0;
foreach(Object *ob, scene->objects) {
*motion_offsets = motion_offset;
motion_offsets++;
/* Clear motion array if there is no actual motion. */
ob->update_motion();
motion_offset += ob->motion.size();
}
state.object_motion = dscene->object_motion.alloc(motion_offset);
}
/* Particle system device offsets
* 0 is dummy particle, index starts at 1.
*/
int numparticles = 1;
foreach(ParticleSystem *psys, scene->particle_systems) {
state.particle_offset[psys] = numparticles;
numparticles += psys->particles.size();
}
/* NOTE: If it's just a handful of objects we deal with them in a single
* thread to avoid threading overhead. However, this threshold is might
* need some tweaks to make mid-complex scenes optimal.
*/
if(scene->objects.size() < 64) {
int object_index = 0;
foreach(Object *ob, scene->objects) {
device_update_object_transform(&state, ob, object_index);
object_index++;
if(progress.get_cancel()) {
return;
}
}
}
else {
const int num_threads = TaskScheduler::num_threads();
TaskPool pool;
for(int i = 0; i < num_threads; ++i) {
pool.push(function_bind(
&ObjectManager::device_update_object_transform_task,
this,
&state));
}
pool.wait_work();
if(progress.get_cancel()) {
return;
}
}
dscene->objects.copy_to_device();
if(state.need_motion == Scene::MOTION_PASS) {
dscene->object_motion_pass.copy_to_device();
}
else if(state.need_motion == Scene::MOTION_BLUR) {
dscene->object_motion.copy_to_device();
}
dscene->data.bvh.have_motion = state.have_motion;
dscene->data.bvh.have_curves = state.have_curves;
dscene->data.bvh.have_instancing = true;
}
void ObjectManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
VLOG(1) << "Total " << scene->objects.size() << " objects.";
device_free(device, dscene);
if(scene->objects.size() == 0)
return;
/* set object transform matrices, before applying static transforms */
progress.set_status("Updating Objects", "Copying Transformations to device");
device_update_transforms(dscene, scene, progress);
if(progress.get_cancel()) return;
/* prepare for static BVH building */
/* todo: do before to support getting object level coords? */
if(scene->params.bvh_type == SceneParams::BVH_STATIC) {
progress.set_status("Updating Objects", "Applying Static Transformations");
apply_static_transforms(dscene, scene, progress);
}
}
void ObjectManager::device_update_flags(Device *,
DeviceScene *dscene,
Scene *scene,
Progress& /*progress*/,
bool bounds_valid)
{
if(!need_update && !need_flags_update)
return;
need_update = false;
need_flags_update = false;
if(scene->objects.size() == 0)
return;
/* Object info flag. */
uint *object_flag = dscene->object_flag.data();
/* Object volume intersection. */
vector<Object *> volume_objects;
bool has_volume_objects = false;
foreach(Object *object, scene->objects) {
if(object->mesh->has_volume) {
if(bounds_valid) {
volume_objects.push_back(object);
}
has_volume_objects = true;
}
}
int object_index = 0;
foreach(Object *object, scene->objects) {
if(object->mesh->has_volume) {
object_flag[object_index] |= SD_OBJECT_HAS_VOLUME;
object_flag[object_index] &= ~SD_OBJECT_HAS_VOLUME_ATTRIBUTES;
foreach(Attribute& attr, object->mesh->attributes.attributes) {
if(attr.element == ATTR_ELEMENT_VOXEL) {
object_flag[object_index] |= SD_OBJECT_HAS_VOLUME_ATTRIBUTES;
}
}
}
else {
object_flag[object_index] &= ~(SD_OBJECT_HAS_VOLUME|SD_OBJECT_HAS_VOLUME_ATTRIBUTES);
}
if(object->is_shadow_catcher) {
object_flag[object_index] |= SD_OBJECT_SHADOW_CATCHER;
}
else {
object_flag[object_index] &= ~SD_OBJECT_SHADOW_CATCHER;
}
if(bounds_valid) {
foreach(Object *volume_object, volume_objects) {
if(object == volume_object) {
continue;
}
if(object->bounds.intersects(volume_object->bounds)) {
object_flag[object_index] |= SD_OBJECT_INTERSECTS_VOLUME;
break;
}
}
}
else if(has_volume_objects) {
/* Not really valid, but can't make more reliable in the case
* of bounds not being up to date.
*/
object_flag[object_index] |= SD_OBJECT_INTERSECTS_VOLUME;
}
++object_index;
}
/* Copy object flag. */
dscene->object_flag.copy_to_device();
}
void ObjectManager::device_update_mesh_offsets(Device *, DeviceScene *dscene, Scene *scene)
{
if(dscene->objects.size() == 0) {
return;
}
KernelObject *kobjects = dscene->objects.data();
bool update = false;
int object_index = 0;
foreach(Object *object, scene->objects) {
Mesh* mesh = object->mesh;
if(mesh->patch_table) {
uint patch_map_offset = 2*(mesh->patch_table_offset + mesh->patch_table->total_size() -
mesh->patch_table->num_nodes * PATCH_NODE_SIZE) - mesh->patch_offset;
if(kobjects[object_index].patch_map_offset != patch_map_offset) {
kobjects[object_index].patch_map_offset = patch_map_offset;
update = true;
}
}
if(kobjects[object_index].attribute_map_offset != mesh->attr_map_offset) {
kobjects[object_index].attribute_map_offset = mesh->attr_map_offset;
update = true;
}
object_index++;
}
if(update) {
dscene->objects.copy_to_device();
}
}
void ObjectManager::device_free(Device *, DeviceScene *dscene)
{
dscene->objects.free();
dscene->object_motion_pass.free();
dscene->object_motion.free();
dscene->object_flag.free();
}
void ObjectManager::apply_static_transforms(DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* todo: normals and displacement should be done before applying transform! */
/* todo: create objects/meshes in right order! */
/* counter mesh users */
map<Mesh*, int> mesh_users;
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
bool apply_to_motion = need_motion != Scene::MOTION_PASS;
int i = 0;
bool have_instancing = false;
foreach(Object *object, scene->objects) {
map<Mesh*, int>::iterator it = mesh_users.find(object->mesh);
if(it == mesh_users.end())
mesh_users[object->mesh] = 1;
else
it->second++;
}
if(progress.get_cancel()) return;
uint *object_flag = dscene->object_flag.data();
/* apply transforms for objects with single user meshes */
foreach(Object *object, scene->objects) {
/* Annoying feedback loop here: we can't use is_instanced() because
* it'll use uninitialized transform_applied flag.
*
* Could be solved by moving reference counter to Mesh.
*/
if((mesh_users[object->mesh] == 1 && !object->mesh->has_surface_bssrdf) &&
!object->mesh->has_true_displacement() && object->mesh->subdivision_type == Mesh::SUBDIVISION_NONE)
{
if(!(motion_blur && object->use_motion())) {
if(!object->mesh->transform_applied) {
object->apply_transform(apply_to_motion);
object->mesh->transform_applied = true;
if(progress.get_cancel()) return;
}
object_flag[i] |= SD_OBJECT_TRANSFORM_APPLIED;
if(object->mesh->transform_negative_scaled)
object_flag[i] |= SD_OBJECT_NEGATIVE_SCALE_APPLIED;
}
else
have_instancing = true;
}
else
have_instancing = true;
i++;
}
dscene->data.bvh.have_instancing = have_instancing;
}
void ObjectManager::tag_update(Scene *scene)
{
need_update = true;
scene->curve_system_manager->need_update = true;
scene->mesh_manager->need_update = true;
scene->light_manager->need_update = true;
}
string ObjectManager::get_cryptomatte_objects(Scene *scene)
{
string manifest = "{";
unordered_set<ustring, ustringHash> objects;
foreach(Object *object, scene->objects) {
if(objects.count(object->name)) {
continue;
}
objects.insert(object->name);
uint32_t hash_name = util_murmur_hash3(object->name.c_str(), object->name.length(), 0);
manifest += string_printf("\"%s\":\"%08x\",", object->name.c_str(), hash_name);
}
manifest[manifest.size()-1] = '}';
return manifest;
}
string ObjectManager::get_cryptomatte_assets(Scene *scene)
{
string manifest = "{";
unordered_set<ustring, ustringHash> assets;
foreach(Object *ob, scene->objects) {
if(assets.count(ob->asset_name)) {
continue;
}
assets.insert(ob->asset_name);
uint32_t hash_asset = util_murmur_hash3(ob->asset_name.c_str(), ob->asset_name.length(), 0);
manifest += string_printf("\"%s\":\"%08x\",", ob->asset_name.c_str(), hash_asset);
}
manifest[manifest.size()-1] = '}';
return manifest;
}
CCL_NAMESPACE_END