blender/intern/cycles/kernel/svm/svm_tex_coord.h
Brecht Van Lommel 9cd2b19999 Cycles Volume Render: generated texture coordinates for volume render.
This does not support staying fixed while the surface deforms, but for static
meshes it should match up with the surface texture coordinates. Implemented
as a matrix transform from objects space to mesh texture space.

Making this work for deforming surfaces would be quite complicated, you might
need something like harmonic coordinates as used in the mesh deform modifier,
probably will not be possible anytime soon.
2013-12-31 17:38:26 +01:00

356 lines
9.8 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* Texture Coordinate Node */
ccl_device void svm_node_tex_coord(KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint type, uint out_offset)
{
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = sd->P;
if(sd->object != ~0)
object_inverse_position_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
if(sd->object != ~0)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
data = transform_point(&tfm, sd->P);
else
data = transform_point(&tfm, sd->P + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && sd->object == ~0 && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P);
else
data = camera_world_to_ndc(kg, sd, sd->P);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != ~0)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P;
if(sd->object != ~0) {
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, ATTR_STD_GENERATED_TRANSFORM, &attr_elem);
object_inverse_position_transform(kg, sd, &data);
if(attr_offset != ATTR_STD_NOT_FOUND) {
Transform tfm = primitive_attribute_matrix(kg, sd, attr_offset);
data = transform_point(&tfm, data);
}
}
break;
}
}
stack_store_float3(stack, out_offset, data);
}
ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint type, uint out_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = sd->P + sd->dP.dx;
if(sd->object != ~0)
object_inverse_position_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
if(sd->object != ~0)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
data = transform_point(&tfm, sd->P + sd->dP.dx);
else
data = transform_point(&tfm, sd->P + sd->dP.dx + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && sd->object == ~0 && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dx);
else
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dx);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != ~0)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P + sd->dP.dx;
if(sd->object != ~0) {
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, ATTR_STD_GENERATED_TRANSFORM, &attr_elem);
object_inverse_position_transform(kg, sd, &data);
if(attr_offset != ATTR_STD_NOT_FOUND) {
Transform tfm = primitive_attribute_matrix(kg, sd, attr_offset);
data = transform_point(&tfm, data);
}
}
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, stack, type, out_offset);
#endif
}
ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint type, uint out_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = sd->P + sd->dP.dy;
if(sd->object != ~0)
object_inverse_position_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
if(sd->object != ~0)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
data = transform_point(&tfm, sd->P + sd->dP.dy);
else
data = transform_point(&tfm, sd->P + sd->dP.dy + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && sd->object == ~0 && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dy);
else
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dy);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != ~0)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P + sd->dP.dy;
if(sd->object != ~0) {
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, ATTR_STD_GENERATED_TRANSFORM, &attr_elem);
object_inverse_position_transform(kg, sd, &data);
if(attr_offset != ATTR_STD_NOT_FOUND) {
Transform tfm = primitive_attribute_matrix(kg, sd, attr_offset);
data = transform_point(&tfm, data);
}
}
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, stack, type, out_offset);
#endif
}
ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset, strength_offset, normal_offset, space;
decode_node_uchar4(node.y, &color_offset, &strength_offset, &normal_offset, &space);
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f*make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
float3 N;
if(space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
if(sd->object == ~0) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* first try to get tangent attribute */
AttributeElement attr_elem, attr_sign_elem, attr_normal_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
int attr_sign_offset = find_attribute(kg, sd, node.w, &attr_sign_elem);
int attr_normal_offset = find_attribute(kg, sd, ATTR_STD_VERTEX_NORMAL, &attr_normal_elem);
if(attr_offset == ATTR_STD_NOT_FOUND || attr_sign_offset == ATTR_STD_NOT_FOUND || attr_normal_offset == ATTR_STD_NOT_FOUND) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* get _unnormalized_ interpolated normal and tangent */
float3 tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
float sign = primitive_attribute_float(kg, sd, attr_sign_elem, attr_sign_offset, NULL, NULL);
float3 normal;
if(sd->shader & SHADER_SMOOTH_NORMAL) {
normal = primitive_attribute_float3(kg, sd, attr_normal_elem, attr_normal_offset, NULL, NULL);
}
else {
normal = sd->Ng;
object_inverse_normal_transform(kg, sd, &normal);
}
/* apply normal map */
float3 B = sign * cross(normal, tangent);
N = normalize(color.x * tangent + color.y * B + color.z * normal);
/* transform to world space */
object_normal_transform(kg, sd, &N);
}
else {
/* strange blender convention */
if(space == NODE_NORMAL_MAP_BLENDER_OBJECT || space == NODE_NORMAL_MAP_BLENDER_WORLD) {
color.y = -color.y;
color.z = -color.z;
}
/* object, world space */
N = color;
if(space == NODE_NORMAL_MAP_OBJECT || space == NODE_NORMAL_MAP_BLENDER_OBJECT)
object_normal_transform(kg, sd, &N);
else
N = normalize(N);
}
float strength = stack_load_float(stack, strength_offset);
if(strength != 1.0f) {
strength = max(strength, 0.0f);
N = normalize(sd->N + (N - sd->N)*strength);
}
stack_store_float3(stack, normal_offset, N);
}
ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint tangent_offset, direction_type, axis;
decode_node_uchar4(node.y, &tangent_offset, &direction_type, &axis, NULL);
float3 tangent;
if(direction_type == NODE_TANGENT_UVMAP) {
/* UV map */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
if(attr_offset == ATTR_STD_NOT_FOUND)
tangent = make_float3(0.0f, 0.0f, 0.0f);
else
tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
}
else {
/* radial */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
float3 generated;
if(attr_offset == ATTR_STD_NOT_FOUND)
generated = sd->P;
else
generated = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
if(axis == NODE_TANGENT_AXIS_X)
tangent = make_float3(0.0f, -(generated.z - 0.5f), (generated.y - 0.5f));
else if(axis == NODE_TANGENT_AXIS_Y)
tangent = make_float3(-(generated.z - 0.5f), 0.0f, (generated.x - 0.5f));
else
tangent = make_float3(-(generated.y - 0.5f), (generated.x - 0.5f), 0.0f);
}
object_normal_transform(kg, sd, &tangent);
tangent = cross(sd->N, normalize(cross(tangent, sd->N)));
stack_store_float3(stack, tangent_offset, tangent);
}
CCL_NAMESPACE_END