blender/intern/cycles/render/buffers.cpp
Sergey Sharybin 6eec49ed20 Cycles: memory usage report
This commit adds memory usage information while rendering.

It reports memory used by device, meaning:

- For CPU it'll report real memory consumption
- For GPU rendering it'll report GPU memory consumption, but it'll
  also mean the same memory is used from host side.

This information displays information about memory requested by Cycles,
not memory really allocated on a device. Real memory usage might be
higher because of memory fragmentation or optimistic memory allocator.

There's really nothing we can do against this.

Also in contrast with blender internal's render cycles memory usage
does not include memory used by scene, only memory needed by cycles
itself will be displayed. So don't freak out if memory usage reported
by cycles would be much lower than blender internal's.

This commit also adds RenderEngine.update_memory_stats callback which
is used to tell memory consumption from external engine to blender.
This information is used to generate information line after rendering
is finished.
2012-11-05 08:04:57 +00:00

395 lines
8.7 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include "buffers.h"
#include "device.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_hash.h"
#include "util_image.h"
#include "util_math.h"
#include "util_opengl.h"
#include "util_time.h"
#include "util_types.h"
CCL_NAMESPACE_BEGIN
/* Buffer Params */
BufferParams::BufferParams()
{
width = 0;
height = 0;
full_x = 0;
full_y = 0;
full_width = 0;
full_height = 0;
Pass::add(PASS_COMBINED, passes);
}
void BufferParams::get_offset_stride(int& offset, int& stride)
{
offset = -(full_x + full_y*width);
stride = width;
}
bool BufferParams::modified(const BufferParams& params)
{
return !(full_x == params.full_x
&& full_y == params.full_y
&& width == params.width
&& height == params.height
&& full_width == params.full_width
&& full_height == params.full_height
&& Pass::equals(passes, params.passes));
}
int BufferParams::get_passes_size()
{
int size = 0;
foreach(Pass& pass, passes)
size += pass.components;
return align_up(size, 4);
}
/* Render Buffer Task */
RenderTile::RenderTile()
{
x = 0;
y = 0;
w = 0;
h = 0;
start_sample = 0;
num_samples = 0;
resolution = 0;
offset = 0;
stride = 0;
buffer = 0;
rng_state = 0;
rgba = 0;
buffers = NULL;
}
/* Render Buffers */
RenderBuffers::RenderBuffers(Device *device_)
{
device = device_;
}
RenderBuffers::~RenderBuffers()
{
device_free();
}
void RenderBuffers::device_free()
{
if(buffer.device_pointer) {
device->mem_free(buffer);
buffer.clear();
}
if(rng_state.device_pointer) {
device->mem_free(rng_state);
rng_state.clear();
}
}
void RenderBuffers::reset(Device *device, BufferParams& params_)
{
params = params_;
/* free existing buffers */
device_free();
/* allocate buffer */
buffer.resize(params.width*params.height*params.get_passes_size());
device->mem_alloc(buffer, MEM_READ_WRITE);
device->mem_zero(buffer);
/* allocate rng state */
rng_state.resize(params.width, params.height);
uint *init_state = rng_state.resize(params.width, params.height);
int x, y, width = params.width, height = params.height;
for(x = 0; x < width; x++)
for(y = 0; y < height; y++)
init_state[x + y*width] = hash_int_2d(params.full_x+x, params.full_y+y);
device->mem_alloc(rng_state, MEM_READ_WRITE);
device->mem_copy_to(rng_state);
}
bool RenderBuffers::copy_from_device()
{
if(!buffer.device_pointer)
return false;
device->mem_copy_from(buffer, 0, params.width, params.height, params.get_passes_size()*sizeof(float));
return true;
}
bool RenderBuffers::get_pass_rect(PassType type, float exposure, int sample, int components, float *pixels)
{
int pass_offset = 0;
foreach(Pass& pass, params.passes) {
if(pass.type != type) {
pass_offset += pass.components;
continue;
}
float *in = (float*)buffer.data_pointer + pass_offset;
int pass_stride = params.get_passes_size();
float scale = (pass.filter)? 1.0f/(float)sample: 1.0f;
float scale_exposure = (pass.exposure)? scale*exposure: scale;
int size = params.width*params.height;
if(components == 1) {
assert(pass.components == components);
/* scalar */
if(type == PASS_DEPTH) {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = (f == 0.0f)? 1e10f: f*scale_exposure;
}
}
else {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f*scale_exposure;
}
}
}
else if(components == 3) {
assert(pass.components == 4);
/* RGBA */
if(type == PASS_SHADOW) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
}
}
else if(pass.divide_type != PASS_NONE) {
/* RGB lighting passes that need to divide out color */
pass_offset = 0;
foreach(Pass& color_pass, params.passes) {
if(color_pass.type == pass.divide_type)
break;
pass_offset += color_pass.components;
}
float *in_divide = (float*)buffer.data_pointer + pass_offset;
for(int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
f = safe_divide_color(f*exposure, f_divide);
pixels[0] = f.x;
pixels[1] = f.y;
pixels[2] = f.z;
}
}
else {
/* RGB/vector */
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
pixels[0] = f.x*scale_exposure;
pixels[1] = f.y*scale_exposure;
pixels[2] = f.z*scale_exposure;
}
}
}
else if(components == 4) {
assert(pass.components == components);
/* RGBA */
if(type == PASS_SHADOW) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
pixels[3] = 1.0f;
}
}
else if(type == PASS_MOTION) {
/* need to normalize by number of samples accumulated for motion */
pass_offset = 0;
foreach(Pass& color_pass, params.passes) {
if(color_pass.type == PASS_MOTION_WEIGHT)
break;
pass_offset += color_pass.components;
}
float *in_weight = (float*)buffer.data_pointer + pass_offset;
for(int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float w = in_weight[0];
float invw = (w > 0.0f)? 1.0f/w: 0.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
pixels[3] = f.w*invw;
}
}
else {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
pixels[0] = f.x*scale_exposure;
pixels[1] = f.y*scale_exposure;
pixels[2] = f.z*scale_exposure;
/* clamp since alpha might be > 1.0 due to russian roulette */
pixels[3] = clamp(f.w*scale, 0.0f, 1.0f);
}
}
}
return true;
}
return false;
}
/* Display Buffer */
DisplayBuffer::DisplayBuffer(Device *device_)
{
device = device_;
draw_width = 0;
draw_height = 0;
transparent = true; /* todo: determine from background */
}
DisplayBuffer::~DisplayBuffer()
{
device_free();
}
void DisplayBuffer::device_free()
{
if(rgba.device_pointer) {
device->pixels_free(rgba);
rgba.clear();
}
}
void DisplayBuffer::reset(Device *device, BufferParams& params_)
{
draw_width = 0;
draw_height = 0;
params = params_;
/* free existing buffers */
device_free();
/* allocate display pixels */
rgba.resize(params.width, params.height);
device->pixels_alloc(rgba);
}
void DisplayBuffer::draw_set(int width, int height)
{
assert(width <= params.width && height <= params.height);
draw_width = width;
draw_height = height;
}
void DisplayBuffer::draw(Device *device)
{
if(draw_width != 0 && draw_height != 0) {
glPushMatrix();
glTranslatef(params.full_x, params.full_y, 0.0f);
device->draw_pixels(rgba, 0, draw_width, draw_height, 0, params.width, params.height, transparent);
glPopMatrix();
}
}
bool DisplayBuffer::draw_ready()
{
return (draw_width != 0 && draw_height != 0);
}
void DisplayBuffer::write(Device *device, const string& filename)
{
int w = draw_width;
int h = draw_height;
if(w == 0 || h == 0)
return;
/* read buffer from device */
device->pixels_copy_from(rgba, 0, w, h);
/* write image */
ImageOutput *out = ImageOutput::create(filename);
ImageSpec spec(w, h, 4, TypeDesc::UINT8);
int scanlinesize = w*4*sizeof(uchar);
out->open(filename, spec);
/* conversion for different top/bottom convention */
out->write_image(TypeDesc::UINT8,
(uchar*)rgba.data_pointer + (h-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
out->close();
delete out;
}
CCL_NAMESPACE_END