blender/intern/cycles/util/util_transform.h
Thomas Dinges 9e4914e055 Cycles:
* Revert r57203 (len() renaming)
There seems to be a problem with nVidia OpenCL after this and I haven't figured out the real cause yet. 
Better to selectively enable native length() later, after figuring out what's wrong. 

This fixes [#35612].
2013-06-04 17:20:00 +00:00

466 lines
13 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __UTIL_TRANSFORM_H__
#define __UTIL_TRANSFORM_H__
#ifndef __KERNEL_GPU__
#include <string.h>
#endif
#include "util_math.h"
#include "util_types.h"
CCL_NAMESPACE_BEGIN
/* Data Types */
typedef struct Transform {
float4 x, y, z, w; /* rows */
#ifndef __KERNEL_GPU__
float4 operator[](int i) const { return *(&x + i); }
float4& operator[](int i) { return *(&x + i); }
#endif
} Transform;
/* transform decomposed in rotation/translation/scale. we use the same data
* structure as Transform, and tightly pack decomposition into it. first the
* rotation (4), then translation (3), then 3x3 scale matrix (9).
*
* For the DecompMotionTransform we drop scale from pre/post. */
typedef struct __may_alias MotionTransform {
Transform pre;
Transform mid;
Transform post;
} MotionTransform;
typedef struct DecompMotionTransform {
Transform mid;
float4 pre_x, pre_y;
float4 post_x, post_y;
} DecompMotionTransform;
/* Functions */
__device_inline float3 transform_perspective(const Transform *t, const float3 a)
{
float4 b = make_float4(a.x, a.y, a.z, 1.0f);
float3 c = make_float3(dot(t->x, b), dot(t->y, b), dot(t->z, b));
float w = dot(t->w, b);
return (w != 0.0f)? c/w: make_float3(0.0f, 0.0f, 0.0f);
}
__device_inline float3 transform_point(const Transform *t, const float3 a)
{
float3 c = make_float3(
a.x*t->x.x + a.y*t->x.y + a.z*t->x.z + t->x.w,
a.x*t->y.x + a.y*t->y.y + a.z*t->y.z + t->y.w,
a.x*t->z.x + a.y*t->z.y + a.z*t->z.z + t->z.w);
return c;
}
__device_inline float3 transform_direction(const Transform *t, const float3 a)
{
float3 c = make_float3(
a.x*t->x.x + a.y*t->x.y + a.z*t->x.z,
a.x*t->y.x + a.y*t->y.y + a.z*t->y.z,
a.x*t->z.x + a.y*t->z.y + a.z*t->z.z);
return c;
}
__device_inline float3 transform_direction_transposed(const Transform *t, const float3 a)
{
float3 x = make_float3(t->x.x, t->y.x, t->z.x);
float3 y = make_float3(t->x.y, t->y.y, t->z.y);
float3 z = make_float3(t->x.z, t->y.z, t->z.z);
return make_float3(dot(x, a), dot(y, a), dot(z, a));
}
__device_inline Transform transform_transpose(const Transform a)
{
Transform t;
t.x.x = a.x.x; t.x.y = a.y.x; t.x.z = a.z.x; t.x.w = a.w.x;
t.y.x = a.x.y; t.y.y = a.y.y; t.y.z = a.z.y; t.y.w = a.w.y;
t.z.x = a.x.z; t.z.y = a.y.z; t.z.z = a.z.z; t.z.w = a.w.z;
t.w.x = a.x.w; t.w.y = a.y.w; t.w.z = a.z.w; t.w.w = a.w.w;
return t;
}
__device_inline Transform make_transform(float a, float b, float c, float d,
float e, float f, float g, float h,
float i, float j, float k, float l,
float m, float n, float o, float p)
{
Transform t;
t.x.x = a; t.x.y = b; t.x.z = c; t.x.w = d;
t.y.x = e; t.y.y = f; t.y.z = g; t.y.w = h;
t.z.x = i; t.z.y = j; t.z.z = k; t.z.w = l;
t.w.x = m; t.w.y = n; t.w.z = o; t.w.w = p;
return t;
}
#ifndef __KERNEL_GPU__
__device_inline Transform operator*(const Transform a, const Transform b)
{
Transform c = transform_transpose(b);
Transform t;
t.x = make_float4(dot(a.x, c.x), dot(a.x, c.y), dot(a.x, c.z), dot(a.x, c.w));
t.y = make_float4(dot(a.y, c.x), dot(a.y, c.y), dot(a.y, c.z), dot(a.y, c.w));
t.z = make_float4(dot(a.z, c.x), dot(a.z, c.y), dot(a.z, c.z), dot(a.z, c.w));
t.w = make_float4(dot(a.w, c.x), dot(a.w, c.y), dot(a.w, c.z), dot(a.w, c.w));
return t;
}
__device_inline void print_transform(const char *label, const Transform& t)
{
print_float4(label, t.x);
print_float4(label, t.y);
print_float4(label, t.z);
print_float4(label, t.w);
printf("\n");
}
__device_inline Transform transform_translate(float3 t)
{
return make_transform(
1, 0, 0, t.x,
0, 1, 0, t.y,
0, 0, 1, t.z,
0, 0, 0, 1);
}
__device_inline Transform transform_translate(float x, float y, float z)
{
return transform_translate(make_float3(x, y, z));
}
__device_inline Transform transform_scale(float3 s)
{
return make_transform(
s.x, 0, 0, 0,
0, s.y, 0, 0,
0, 0, s.z, 0,
0, 0, 0, 1);
}
__device_inline Transform transform_scale(float x, float y, float z)
{
return transform_scale(make_float3(x, y, z));
}
__device_inline Transform transform_perspective(float fov, float n, float f)
{
Transform persp = make_transform(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, f / (f - n), -f*n / (f - n),
0, 0, 1, 0);
float inv_angle = 1.0f/tanf(0.5f*fov);
Transform scale = transform_scale(inv_angle, inv_angle, 1);
return scale * persp;
}
__device_inline Transform transform_rotate(float angle, float3 axis)
{
float s = sinf(angle);
float c = cosf(angle);
float t = 1.0f - c;
axis = normalize(axis);
return make_transform(
axis.x*axis.x*t + c,
axis.x*axis.y*t - s*axis.z,
axis.x*axis.z*t + s*axis.y,
0.0f,
axis.y*axis.x*t + s*axis.z,
axis.y*axis.y*t + c,
axis.y*axis.z*t - s*axis.x,
0.0f,
axis.z*axis.x*t - s*axis.y,
axis.z*axis.y*t + s*axis.x,
axis.z*axis.z*t + c,
0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
}
__device_inline Transform transform_euler(float3 euler)
{
return
transform_rotate(euler.x, make_float3(1.0f, 0.0f, 0.0f)) *
transform_rotate(euler.y, make_float3(0.0f, 1.0f, 0.0f)) *
transform_rotate(euler.z, make_float3(0.0f, 0.0f, 1.0f));
}
__device_inline Transform transform_orthographic(float znear, float zfar)
{
return transform_scale(1.0f, 1.0f, 1.0f / (zfar-znear)) *
transform_translate(0.0f, 0.0f, -znear);
}
__device_inline Transform transform_identity()
{
return transform_scale(1.0f, 1.0f, 1.0f);
}
__device_inline bool operator==(const Transform& A, const Transform& B)
{
return memcmp(&A, &B, sizeof(Transform)) == 0;
}
__device_inline bool operator!=(const Transform& A, const Transform& B)
{
return !(A == B);
}
__device_inline float3 transform_get_column(const Transform *t, int column)
{
return make_float3(t->x[column], t->y[column], t->z[column]);
}
__device_inline void transform_set_column(Transform *t, int column, float3 value)
{
t->x[column] = value.x;
t->y[column] = value.y;
t->z[column] = value.z;
}
Transform transform_inverse(const Transform& a);
__device_inline bool transform_uniform_scale(const Transform& tfm, float& scale)
{
/* the epsilon here is quite arbitrary, but this function is only used for
* surface area and bump, where we except it to not be so sensitive */
Transform ttfm = transform_transpose(tfm);
float eps = 1e-6f;
float sx = len_squared(float4_to_float3(tfm.x));
float sy = len_squared(float4_to_float3(tfm.y));
float sz = len_squared(float4_to_float3(tfm.z));
float stx = len_squared(float4_to_float3(ttfm.x));
float sty = len_squared(float4_to_float3(ttfm.y));
float stz = len_squared(float4_to_float3(ttfm.z));
if(fabsf(sx - sy) < eps && fabsf(sx - sz) < eps &&
fabsf(sx - stx) < eps && fabsf(sx - sty) < eps &&
fabsf(sx - stz) < eps) {
scale = sx;
return true;
}
return false;
}
__device_inline bool transform_negative_scale(const Transform& tfm)
{
float3 c0 = transform_get_column(&tfm, 0);
float3 c1 = transform_get_column(&tfm, 1);
float3 c2 = transform_get_column(&tfm, 2);
return (dot(cross(c0, c1), c2) < 0.0f);
}
__device_inline Transform transform_clear_scale(const Transform& tfm)
{
Transform ntfm = tfm;
transform_set_column(&ntfm, 0, normalize(transform_get_column(&ntfm, 0)));
transform_set_column(&ntfm, 1, normalize(transform_get_column(&ntfm, 1)));
transform_set_column(&ntfm, 2, normalize(transform_get_column(&ntfm, 2)));
return ntfm;
}
#endif
/* Motion Transform */
__device_inline float4 quat_interpolate(float4 q1, float4 q2, float t)
{
/* use simpe nlerp instead of slerp. it's faster and almost the same */
return normalize((1.0f - t)*q1 + t*q2);
#if 0
/* note: this does not ensure rotation around shortest angle, q1 and q2
* are assumed to be matched already in transform_motion_decompose */
float costheta = dot(q1, q2);
/* possible optimization: it might be possible to precompute theta/qperp */
if(costheta > 0.9995f) {
/* linear interpolation in degenerate case */
return normalize((1.0f - t)*q1 + t*q2);
}
else {
/* slerp */
float theta = acosf(clamp(costheta, -1.0f, 1.0f));
float4 qperp = normalize(q2 - q1 * costheta);
float thetap = theta * t;
return q1 * cosf(thetap) + qperp * sinf(thetap);
}
#endif
}
__device_inline Transform transform_quick_inverse(Transform M)
{
/* possible optimization: can we avoid doing this altogether and construct
* the inverse matrix directly from negated translation, transposed rotation,
* scale can be inverted but what about shearing? */
Transform R;
float det = M.x.x*(M.z.z*M.y.y - M.z.y*M.y.z) - M.y.x*(M.z.z*M.x.y - M.z.y*M.x.z) + M.z.x*(M.y.z*M.x.y - M.y.y*M.x.z);
det = (det != 0.0f)? 1.0f/det: 0.0f;
float3 Rx = det*make_float3(M.z.z*M.y.y - M.z.y*M.y.z, M.z.y*M.x.z - M.z.z*M.x.y, M.y.z*M.x.y - M.y.y*M.x.z);
float3 Ry = det*make_float3(M.z.x*M.y.z - M.z.z*M.y.x, M.z.z*M.x.x - M.z.x*M.x.z, M.y.x*M.x.z - M.y.z*M.x.x);
float3 Rz = det*make_float3(M.z.y*M.y.x - M.z.x*M.y.y, M.z.x*M.x.y - M.z.y*M.x.x, M.y.y*M.x.x - M.y.x*M.x.y);
float3 T = -make_float3(M.x.w, M.y.w, M.z.w);
R.x = make_float4(Rx.x, Rx.y, Rx.z, dot(Rx, T));
R.y = make_float4(Ry.x, Ry.y, Ry.z, dot(Ry, T));
R.z = make_float4(Rz.x, Rz.y, Rz.z, dot(Rz, T));
R.w = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
return R;
}
__device_inline void transform_compose(Transform *tfm, const Transform *decomp)
{
/* rotation */
float q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
q0 = M_SQRT2_F * decomp->x.w;
q1 = M_SQRT2_F * decomp->x.x;
q2 = M_SQRT2_F * decomp->x.y;
q3 = M_SQRT2_F * decomp->x.z;
qda = q0*q1;
qdb = q0*q2;
qdc = q0*q3;
qaa = q1*q1;
qab = q1*q2;
qac = q1*q3;
qbb = q2*q2;
qbc = q2*q3;
qcc = q3*q3;
float3 rotation_x = make_float3(1.0f-qbb-qcc, -qdc+qab, qdb+qac);
float3 rotation_y = make_float3(qdc+qab, 1.0f-qaa-qcc, -qda+qbc);
float3 rotation_z = make_float3(-qdb+qac, qda+qbc, 1.0f-qaa-qbb);
/* scale */
float3 scale_x = make_float3(decomp->y.w, decomp->z.z, decomp->w.y);
float3 scale_y = make_float3(decomp->z.x, decomp->z.w, decomp->w.z);
float3 scale_z = make_float3(decomp->z.y, decomp->w.x, decomp->w.w);
/* compose with translation */
tfm->x = make_float4(dot(rotation_x, scale_x), dot(rotation_x, scale_y), dot(rotation_x, scale_z), decomp->y.x);
tfm->y = make_float4(dot(rotation_y, scale_x), dot(rotation_y, scale_y), dot(rotation_y, scale_z), decomp->y.y);
tfm->z = make_float4(dot(rotation_z, scale_x), dot(rotation_z, scale_y), dot(rotation_z, scale_z), decomp->y.z);
tfm->w = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
}
/* Disabled for now, need arc-length parametrization for constant speed motion.
* #define CURVED_MOTION_INTERPOLATE */
__device void transform_motion_interpolate(Transform *tfm, const DecompMotionTransform *motion, float t)
{
/* possible optimization: is it worth it adding a check to skip scaling?
* it's probably quite uncommon to have scaling objects. or can we skip
* just shearing perhaps? */
Transform decomp;
#ifdef CURVED_MOTION_INTERPOLATE
/* 3 point bezier curve interpolation for position */
float3 Ppre = float4_to_float3(motion->pre_y);
float3 Pmid = float4_to_float3(motion->mid.y);
float3 Ppost = float4_to_float3(motion->post_y);
float3 Pcontrol = 2.0f*Pmid - 0.5f*(Ppre + Ppost);
float3 P = Ppre*t*t + Pcontrol*2.0f*t*(1.0f - t) + Ppost*(1.0f - t)*(1.0f - t);
decomp.y.x = P.x;
decomp.y.y = P.y;
decomp.y.z = P.z;
#endif
/* linear interpolation for rotation and scale */
if(t < 0.5f) {
t *= 2.0f;
decomp.x = quat_interpolate(motion->pre_x, motion->mid.x, t);
#ifdef CURVED_MOTION_INTERPOLATE
decomp.y.w = (1.0f - t)*motion->pre_y.w + t*motion->mid.y.w;
#else
decomp.y = (1.0f - t)*motion->pre_y + t*motion->mid.y;
#endif
}
else {
t = (t - 0.5f)*2.0f;
decomp.x = quat_interpolate(motion->mid.x, motion->post_x, t);
#ifdef CURVED_MOTION_INTERPOLATE
decomp.y.w = (1.0f - t)*motion->mid.y.w + t*motion->post_y.w;
#else
decomp.y = (1.0f - t)*motion->mid.y + t*motion->post_y;
#endif
}
decomp.z = motion->mid.z;
decomp.w = motion->mid.w;
/* compose rotation, translation, scale into matrix */
transform_compose(tfm, &decomp);
}
#ifndef __KERNEL_GPU__
__device_inline bool operator==(const MotionTransform& A, const MotionTransform& B)
{
return (A.pre == B.pre && A.post == B.post);
}
float4 transform_to_quat(const Transform& tfm);
void transform_motion_decompose(DecompMotionTransform *decomp, const MotionTransform *motion, const Transform *mid);
#endif
CCL_NAMESPACE_END
#endif /* __UTIL_TRANSFORM_H__ */