blender/intern/cycles/kernel/bvh/qbvh_shadow_all.h
Sergey Sharybin 94c919349b Cycles: Cleanup file headers
Some of the files were wrongly attributing code to some other
organizations and in few places proper attribution was missing.

This is mainly either a copy-paste error (when new file was
created from an existing one and header wasn't updated) or due
to some refactor which split non-original-BF code with purely
BF code.

Should solve some confusion around.
2016-09-29 10:11:40 +02:00

482 lines
15 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a template BVH traversal function, where various features can be
* enabled/disabled. This way we can compile optimized versions for each case
* without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_HAIR: hair curve rendering
* BVH_MOTION: motion blur rendering
*
*/
#if BVH_FEATURE(BVH_HAIR)
# define NODE_INTERSECT qbvh_node_intersect
#else
# define NODE_INTERSECT qbvh_aligned_node_intersect
#endif
ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
const uint max_hits,
uint *num_hits)
{
/* TODO(sergey):
* - Test if pushing distance on the stack helps.
* - Likely and unlikely for if() statements.
* - Test restrict attribute for pointers.
*/
/* Traversal stack in CUDA thread-local memory. */
QBVHStackItem traversal_stack[BVH_QSTACK_SIZE];
traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
/* Traversal variables in registers. */
int stack_ptr = 0;
int node_addr = kernel_data.bvh.root;
/* Ray parameters in registers. */
const float tmax = ray->t;
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
float isect_t = tmax;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_itfm;
#endif
*num_hits = 0;
isect_array->t = tmax;
#ifndef __KERNEL_SSE41__
if(!isfinite(P.x)) {
return false;
}
#endif
#if BVH_FEATURE(BVH_INSTANCING)
int num_hits_in_instance = 0;
#endif
ssef tnear(0.0f), tfar(isect_t);
#if BVH_FEATURE(BVH_HAIR)
sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z));
#endif
sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
float3 P_idir = P*idir;
sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z);
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
/* Offsets to select the side that becomes the lower or upper bound. */
int near_x, near_y, near_z;
int far_x, far_y, far_z;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
IsectPrecalc isect_precalc;
triangle_intersect_precalc(dir, &isect_precalc);
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
#ifdef __VISIBILITY_FLAG__
if((__float_as_uint(inodes.x) & PATH_RAY_SHADOW) == 0) {
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
#endif
ssef dist;
int child_mask = NODE_INTERSECT(kg,
tnear,
tfar,
#ifdef __KERNEL_AVX2__
P_idir4,
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4,
#endif
#if BVH_FEATURE(BVH_HAIR)
dir4,
#endif
idir4,
near_x, near_y, near_z,
far_x, far_y, far_z,
node_addr,
&dist);
if(child_mask != 0) {
float4 cnodes;
#if BVH_FEATURE(BVH_HAIR)
if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13);
}
else
#endif
{
cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7);
}
/* One child is hit, continue with that child. */
int r = __bscf(child_mask);
if(child_mask == 0) {
node_addr = __float_as_int(cnodes[r]);
continue;
}
/* Two children are hit, push far child, and continue with
* closer child.
*/
int c0 = __float_as_int(cnodes[r]);
float d0 = ((float*)&dist)[r];
r = __bscf(child_mask);
int c1 = __float_as_int(cnodes[r]);
float d1 = ((float*)&dist)[r];
if(child_mask == 0) {
if(d1 < d0) {
node_addr = c1;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c0;
traversal_stack[stack_ptr].dist = d0;
continue;
}
else {
node_addr = c0;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c1;
traversal_stack[stack_ptr].dist = d1;
continue;
}
}
/* Here starts the slow path for 3 or 4 hit children. We push
* all nodes onto the stack to sort them there.
*/
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c1;
traversal_stack[stack_ptr].dist = d1;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c0;
traversal_stack[stack_ptr].dist = d0;
/* Three children are hit, push all onto stack and sort 3
* stack items, continue with closest child.
*/
r = __bscf(child_mask);
int c2 = __float_as_int(cnodes[r]);
float d2 = ((float*)&dist)[r];
if(child_mask == 0) {
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c2;
traversal_stack[stack_ptr].dist = d2;
qbvh_stack_sort(&traversal_stack[stack_ptr],
&traversal_stack[stack_ptr - 1],
&traversal_stack[stack_ptr - 2]);
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
/* Four children are hit, push all onto stack and sort 4
* stack items, continue with closest child.
*/
r = __bscf(child_mask);
int c3 = __float_as_int(cnodes[r]);
float d3 = ((float*)&dist)[r];
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c3;
traversal_stack[stack_ptr].dist = d3;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c2;
traversal_stack[stack_ptr].dist = d2;
qbvh_stack_sort(&traversal_stack[stack_ptr],
&traversal_stack[stack_ptr - 1],
&traversal_stack[stack_ptr - 2],
&traversal_stack[stack_ptr - 3]);
}
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
}
/* If node is leaf, fetch triangle list. */
if(node_addr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));
#ifdef __VISIBILITY_FLAG__
if((__float_as_uint(leaf.z) & PATH_RAY_SHADOW) == 0) {
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
#endif
int prim_addr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
if(prim_addr >= 0) {
#endif
int prim_addr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
const uint p_type = type & PRIMITIVE_ALL;
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
/* Primitive intersection. */
while(prim_addr < prim_addr2) {
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
bool hit;
/* todo: specialized intersect functions which don't fill in
* isect unless needed and check SD_HAS_TRANSPARENT_SHADOW?
* might give a few % performance improvement */
switch(p_type) {
case PRIMITIVE_TRIANGLE: {
hit = triangle_intersect(kg,
&isect_precalc,
isect_array,
P,
PATH_RAY_SHADOW,
object,
prim_addr);
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
hit = motion_triangle_intersect(kg,
isect_array,
P,
dir,
ray->time,
PATH_RAY_SHADOW,
object,
prim_addr);
break;
}
#endif
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
hit = bvh_cardinal_curve_intersect(kg,
isect_array,
P,
dir,
PATH_RAY_SHADOW,
object,
prim_addr,
ray->time,
type,
NULL,
0, 0);
}
else {
hit = bvh_curve_intersect(kg,
isect_array,
P,
dir,
PATH_RAY_SHADOW,
object,
prim_addr,
ray->time,
type,
NULL,
0, 0);
}
break;
}
#endif
default: {
hit = false;
break;
}
}
/* Shadow ray early termination. */
if(hit) {
/* detect if this surface has a shader with transparent shadows */
/* todo: optimize so primitive visibility flag indicates if
* the primitive has a transparent shadow shader? */
int prim = kernel_tex_fetch(__prim_index, isect_array->prim);
int shader = 0;
#ifdef __HAIR__
if(kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE)
#endif
{
shader = kernel_tex_fetch(__tri_shader, prim);
}
#ifdef __HAIR__
else {
float4 str = kernel_tex_fetch(__curves, prim);
shader = __float_as_int(str.z);
}
#endif
int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*SHADER_SIZE);
/* if no transparent shadows, all light is blocked */
if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
return true;
}
/* if maximum number of hits reached, block all light */
else if(*num_hits == max_hits) {
return true;
}
/* move on to next entry in intersections array */
isect_array++;
(*num_hits)++;
#if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
}
prim_addr++;
}
}
#if BVH_FEATURE(BVH_INSTANCING)
else {
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
# if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_itfm);
# else
bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
# endif
num_hits_in_instance = 0;
isect_array->t = isect_t;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
tfar = ssef(isect_t);
# if BVH_FEATURE(BVH_HAIR)
dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
triangle_intersect_precalc(dir, &isect_precalc);
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
node_addr = kernel_tex_fetch(__object_node, object);
}
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(node_addr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
if(stack_ptr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* Instance pop. */
if(num_hits_in_instance) {
float t_fac;
# if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm);
# else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
# endif
/* Scale isect->t to adjust for instancing. */
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
}
else {
float ignore_t = FLT_MAX;
# if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_itfm);
# else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
# endif
}
isect_t = tmax;
isect_array->t = isect_t;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
tfar = ssef(isect_t);
# if BVH_FEATURE(BVH_HAIR)
dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
triangle_intersect_precalc(dir, &isect_precalc);
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(node_addr != ENTRYPOINT_SENTINEL);
return false;
}
#undef NODE_INTERSECT