blender/intern/cycles/kernel/closure/bssrdf.h
Brecht Van Lommel a3abb020e3 Fix Cycles CUDA performance on CUDA 8.0.
Mostly this is making inlining match CUDA 7.5 in a few performance critical
places. The end result is that performance is now better than before, possibly
due to less register spilling or other CUDA 8.0 compiler improvements.

On benchmarks scenes, there are 3% to 35% render time reductions. Stack memory
usage is reduced a little too.

Reviewed By: sergey

Differential Revision: https://developer.blender.org/D2269
2016-10-03 22:15:25 +02:00

406 lines
11 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __KERNEL_BSSRDF_H__
#define __KERNEL_BSSRDF_H__
CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct Bssrdf {
SHADER_CLOSURE_BASE;
float radius;
float sharpness;
float d;
float texture_blur;
float albedo;
float3 N;
} Bssrdf;
/* Planar Truncated Gaussian
*
* Note how this is different from the typical gaussian, this one integrates
* to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
* that integrating x*exp(-x) gives a nice closed form solution. */
/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
#define GAUSS_TRUNCATE 12.46f
ccl_device float bssrdf_gaussian_eval(const ShaderClosure *sc, float r)
{
/* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
* = 1 - exp(-Rm*Rm/(2*v)) */
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float v = bssrdf->radius*bssrdf->radius*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
if(r >= Rm)
return 0.0f;
return expf(-r*r/(2.0f*v))/(2.0f*M_PI_F*v);
}
ccl_device float bssrdf_gaussian_pdf(const ShaderClosure *sc, float r)
{
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
return bssrdf_gaussian_eval(sc, r) * (1.0f/(area_truncated));
}
ccl_device void bssrdf_gaussian_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
* r = sqrt(-2*v*logf(xi)) */
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float v = bssrdf->radius*bssrdf->radius*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
/* r(xi) */
const float r_squared = -2.0f*v*logf(1.0f - xi*area_truncated);
*r = sqrtf(r_squared);
/* h^2 + r^2 = Rm^2 */
*h = safe_sqrtf(Rm*Rm - r_squared);
}
/* Planar Cubic BSSRDF falloff
*
* This is basically (Rm - x)^3, with some factors to normalize it. For sampling
* we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
* far as I can tell has no closed form solution. So we get an iterative solution
* instead with newton-raphson. */
ccl_device float bssrdf_cubic_eval(const ShaderClosure *sc, float r)
{
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float sharpness = bssrdf->sharpness;
if(sharpness == 0.0f) {
const float Rm = bssrdf->radius;
if(r >= Rm)
return 0.0f;
/* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
const float Rm5 = (Rm*Rm) * (Rm*Rm) * Rm;
const float f = Rm - r;
const float num = f*f*f;
return (10.0f * num) / (Rm5 * M_PI_F);
}
else {
float Rm = bssrdf->radius*(1.0f + sharpness);
if(r >= Rm)
return 0.0f;
/* custom variation with extra sharpness, to match the previous code */
const float y = 1.0f/(1.0f + sharpness);
float Rmy, ry, ryinv;
if(sharpness == 1.0f) {
Rmy = sqrtf(Rm);
ry = sqrtf(r);
ryinv = (ry > 0.0f)? 1.0f/ry: 0.0f;
}
else {
Rmy = powf(Rm, y);
ry = powf(r, y);
ryinv = (r > 0.0f)? powf(r, 2.0f*y - 2.0f): 0.0f;
}
const float Rmy5 = (Rmy*Rmy) * (Rmy*Rmy) * Rmy;
const float f = Rmy - ry;
const float num = f*(f*f)*(y*ryinv);
return (10.0f * num) / (Rmy5 * M_PI_F);
}
}
ccl_device float bssrdf_cubic_pdf(const ShaderClosure *sc, float r)
{
return bssrdf_cubic_eval(sc, r);
}
/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
ccl_device_forceinline float bssrdf_cubic_quintic_root_find(float xi)
{
/* newton-raphson iteration, usually succeeds in 2-4 iterations, except
* outside 0.02 ... 0.98 where it can go up to 10, so overall performance
* should not be too bad */
const float tolerance = 1e-6f;
const int max_iteration_count = 10;
float x = 0.25f;
int i;
for(i = 0; i < max_iteration_count; i++) {
float x2 = x*x;
float x3 = x2*x;
float nx = (1.0f - x);
float f = 10.0f*x2 - 20.0f*x3 + 15.0f*x2*x2 - 4.0f*x2*x3 - xi;
float f_ = 20.0f*(x*nx)*(nx*nx);
if(fabsf(f) < tolerance || f_ == 0.0f)
break;
x = saturate(x - f/f_);
}
return x;
}
ccl_device void bssrdf_cubic_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float sharpness = bssrdf->sharpness;
float Rm = bssrdf->radius;
float r_ = bssrdf_cubic_quintic_root_find(xi);
if(sharpness != 0.0f) {
r_ = powf(r_, 1.0f + sharpness);
Rm *= (1.0f + sharpness);
}
r_ *= Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = safe_sqrtf(Rm*Rm - r_*r_);
}
/* Approximate Reflectance Profiles
* http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
*/
/* This is a bit arbitrary, just need big enough radius so it matches
* the mean free length, but still not too big so sampling is still
* effective. Might need some further tweaks.
*/
#define BURLEY_TRUNCATE 16.0f
#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
ccl_device_inline float bssrdf_burley_fitting(float A)
{
/* Diffuse surface transmission, equation (6). */
return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
}
/* Scale mean free path length so it gives similar looking result
* to Cubic and Gaussian models.
*/
ccl_device_inline float bssrdf_burley_compatible_mfp(float r)
{
return 0.25f * M_1_PI_F * r;
}
ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
{
/* Mean free path length. */
const float l = bssrdf_burley_compatible_mfp(bssrdf->radius);
/* Surface albedo. */
const float A = bssrdf->albedo;
const float s = bssrdf_burley_fitting(A);
const float d = l / s;
bssrdf->d = d;
}
ccl_device float bssrdf_burley_eval(const ShaderClosure *sc, float r)
{
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float d = bssrdf->d;
const float Rm = BURLEY_TRUNCATE * d;
if(r >= Rm)
return 0.0f;
/* Burley refletance profile, equation (3).
*
* NOTES:
* - Surface albedo is already included into sc->weight, no need to
* multiply by this term here.
* - This is normalized diffuse model, so the equation is mutliplied
* by 2*pi, which also matches cdf().
*/
float exp_r_3_d = expf(-r / (3.0f * d));
float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
return (exp_r_d + exp_r_3_d) / (4.0f*d);
}
ccl_device float bssrdf_burley_pdf(const ShaderClosure *sc, float r)
{
return bssrdf_burley_eval(sc, r) * (1.0f/BURLEY_TRUNCATE_CDF);
}
/* Find the radius for desired CDF value.
* Returns scaled radius, meaning the result is to be scaled up by d.
* Since there's no closed form solution we do Newton-Raphson method to find it.
*/
ccl_device_forceinline float bssrdf_burley_root_find(float xi)
{
const float tolerance = 1e-6f;
const int max_iteration_count = 10;
/* Do initial guess based on manual curve fitting, this allows us to reduce
* number of iterations to maximum 4 across the [0..1] range. We keep maximum
* number of iteration higher just to be sure we didn't miss root in some
* corner case.
*/
float r;
if(xi <= 0.9f) {
r = expf(xi * xi * 2.4f) - 1.0f;
}
else {
/* TODO(sergey): Some nicer curve fit is possible here. */
r = 15.0f;
}
/* Solve against scaled radius. */
for(int i = 0; i < max_iteration_count; i++) {
float exp_r_3 = expf(-r / 3.0f);
float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
float f_ = 0.25f * exp_r + 0.25f * exp_r_3;
if(fabsf(f) < tolerance || f_ == 0.0f) {
break;
}
r = r - f/f_;
if(r < 0.0f) {
r = 0.0f;
}
}
return r;
}
ccl_device void bssrdf_burley_sample(const ShaderClosure *sc,
float xi,
float *r,
float *h)
{
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float d = bssrdf->d;
const float Rm = BURLEY_TRUNCATE * d;
const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = safe_sqrtf(Rm*Rm - r_*r_);
}
/* None BSSRDF falloff
*
* Samples distributed over disk with no falloff, for reference. */
ccl_device float bssrdf_none_eval(const ShaderClosure *sc, float r)
{
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float Rm = bssrdf->radius;
return (r < Rm)? 1.0f: 0.0f;
}
ccl_device float bssrdf_none_pdf(const ShaderClosure *sc, float r)
{
/* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float Rm = bssrdf->radius;
const float area = (M_PI_F*Rm*Rm);
return bssrdf_none_eval(sc, r) / area;
}
ccl_device void bssrdf_none_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
* r = sqrt(xi)*Rm */
const Bssrdf *bssrdf = (const Bssrdf*)sc;
const float Rm = bssrdf->radius;
const float r_ = sqrtf(xi)*Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = safe_sqrtf(Rm*Rm - r_*r_);
}
/* Generic */
ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
{
Bssrdf *bssrdf = (Bssrdf*)closure_alloc(sd, sizeof(Bssrdf), CLOSURE_NONE_ID, weight);
if(!bssrdf)
return NULL;
float sample_weight = fabsf(average(weight));
bssrdf->sample_weight = sample_weight;
return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? bssrdf : NULL;
}
ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type)
{
if(bssrdf->radius < BSSRDF_MIN_RADIUS) {
/* revert to diffuse BSDF if radius too small */
DiffuseBsdf *bsdf = (DiffuseBsdf*)bssrdf;
bsdf->N = bssrdf->N;
int flag = bsdf_diffuse_setup(bsdf);
bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
return flag;
}
else {
bssrdf->texture_blur = saturate(bssrdf->texture_blur);
bssrdf->sharpness = saturate(bssrdf->sharpness);
bssrdf->type = type;
if(type == CLOSURE_BSSRDF_BURLEY_ID) {
bssrdf_burley_setup(bssrdf);
}
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF;
}
}
ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
bssrdf_cubic_sample(sc, xi, r, h);
else if(sc->type == CLOSURE_BSSRDF_GAUSSIAN_ID)
bssrdf_gaussian_sample(sc, xi, r, h);
else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID)*/
bssrdf_burley_sample(sc, xi, r, h);
}
ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
return bssrdf_cubic_pdf(sc, r);
else if(sc->type == CLOSURE_BSSRDF_GAUSSIAN_ID)
return bssrdf_gaussian_pdf(sc, r);
else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID)*/
return bssrdf_burley_pdf(sc, r);
}
CCL_NAMESPACE_END
#endif /* __KERNEL_BSSRDF_H__ */