blender/intern/cycles/kernel/split/kernel_path_init.h

103 lines
3.7 KiB
C

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* This kernel initializes structures needed in path-iteration kernels.
* This is the first kernel in ray-tracing logic.
*
* Ray state of rays outside the tile-boundary will be marked RAY_INACTIVE
*/
ccl_device void kernel_path_init(KernelGlobals *kg) {
int ray_index = ccl_global_id(0) + ccl_global_id(1) * ccl_global_size(0);
/* This is the first assignment to ray_state;
* So we dont use ASSIGN_RAY_STATE macro.
*/
kernel_split_state.ray_state[ray_index] = RAY_ACTIVE;
unsigned int my_sample;
unsigned int pixel_x;
unsigned int pixel_y;
unsigned int tile_x;
unsigned int tile_y;
unsigned int work_index = 0;
/* Get work. */
if(!get_next_work(kg, &work_index, ray_index)) {
/* No more work, mark ray as inactive */
kernel_split_state.ray_state[ray_index] = RAY_INACTIVE;
return;
}
/* Get the sample associated with the work. */
my_sample = get_work_sample(kg, work_index, ray_index) + kernel_split_params.start_sample;
/* Get pixel and tile position associated with the work. */
get_work_pixel_tile_position(kg, &pixel_x, &pixel_y,
&tile_x, &tile_y,
work_index,
ray_index);
kernel_split_state.work_array[ray_index] = work_index;
ccl_global uint *rng_state = kernel_split_params.rng_state;
rng_state += kernel_split_params.offset + pixel_x + pixel_y*kernel_split_params.stride;
ccl_global float *buffer = kernel_split_params.buffer;
buffer += (kernel_split_params.offset + pixel_x + pixel_y * kernel_split_params.stride) * kernel_data.film.pass_stride;
/* Initialize random numbers and ray. */
kernel_path_trace_setup(kg,
rng_state,
my_sample,
pixel_x, pixel_y,
&kernel_split_state.rng[ray_index],
&kernel_split_state.ray[ray_index]);
if(kernel_split_state.ray[ray_index].t != 0.0f) {
/* Initialize throughput, L_transparent, Ray, PathState;
* These rays proceed with path-iteration.
*/
kernel_split_state.throughput[ray_index] = make_float3(1.0f, 1.0f, 1.0f);
kernel_split_state.L_transparent[ray_index] = 0.0f;
path_radiance_init(&kernel_split_state.path_radiance[ray_index], kernel_data.film.use_light_pass);
path_state_init(kg,
&kernel_split_state.sd_DL_shadow[ray_index],
&kernel_split_state.path_state[ray_index],
&kernel_split_state.rng[ray_index],
my_sample,
&kernel_split_state.ray[ray_index]);
#ifdef __SUBSURFACE__
kernel_path_subsurface_init_indirect(&kernel_split_state.ss_rays[ray_index]);
#endif
#ifdef __KERNEL_DEBUG__
debug_data_init(&kernel_split_state.debug_data[ray_index]);
#endif
}
else {
/* These rays do not participate in path-iteration. */
float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* Accumulate result in output buffer. */
kernel_write_pass_float4(buffer, my_sample, L_rad);
path_rng_end(kg, rng_state, kernel_split_state.rng[ray_index]);
ASSIGN_RAY_STATE(kernel_split_state.ray_state, ray_index, RAY_TO_REGENERATE);
}
}
CCL_NAMESPACE_END