blender/intern/cycles/kernel/osl/nodes/node_texture.h
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

252 lines
5.4 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Voronoi Distances */
float voronoi_distance(string distance_metric, vector d, float e)
{
float result = 0.0;
if(distance_metric == "Distance Squared")
result = dot(d, d);
if(distance_metric == "Actual Distance")
result = length(d);
if(distance_metric == "Manhattan")
result = fabs(d[0]) + fabs(d[1]) + fabs(d[2]);
if(distance_metric == "Chebychev")
result = max(fabs(d[0]), max(fabs(d[1]), fabs(d[2])));
if(distance_metric == "Minkovsky 1/2")
result = sqrt(fabs(d[0])) + sqrt(fabs(d[1])) + sqrt(fabs(d[1]));
if(distance_metric == "Minkovsky 4")
result = sqrt(sqrt(dot(d*d, d*d)));
if(distance_metric == "Minkovsky")
result = pow(pow(fabs(d[0]), e) + pow(fabs(d[1]), e) + pow(fabs(d[2]), e), 1.0/e);
return result;
}
/* Voronoi / Worley like */
color cellnoise_color(point p)
{
float r = cellnoise(p);
float g = cellnoise(point(p[1], p[0], p[2]));
float b = cellnoise(point(p[1], p[2], p[0]));
return color(r, g, b);
}
void voronoi(point p, string distance_metric, float e, float da[4], point pa[4])
{
/* returns distances in da and point coords in pa */
int xx, yy, zz, xi, yi, zi;
xi = (int)floor(p[0]);
yi = (int)floor(p[1]);
zi = (int)floor(p[2]);
da[0] = 1e10;
da[1] = 1e10;
da[2] = 1e10;
da[3] = 1e10;
for(xx = xi-1; xx <= xi+1; xx++) {
for(yy = yi-1; yy <= yi+1; yy++) {
for(zz = zi-1; zz <= zi+1; zz++) {
point ip = point(xx, yy, zz);
point vp = (point)cellnoise_color(ip);
point pd = p - (vp + ip);
float d = voronoi_distance(distance_metric, pd, e);
vp += point(xx, yy, zz);
if(d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if(d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if(d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if(d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
}
float voronoi_Fn(point p, int n)
{
float da[4];
point pa[4];
voronoi(p, "Distance Squared", 0, da, pa);
return da[n];
}
float voronoi_FnFn(point p, int n1, int n2)
{
float da[4];
point pa[4];
voronoi(p, "Distance Squared", 0, da, pa);
return da[n2] - da[n1];
}
float voronoi_F1(point p) { return voronoi_Fn(p, 0); }
float voronoi_F2(point p) { return voronoi_Fn(p, 1); }
float voronoi_F3(point p) { return voronoi_Fn(p, 2); }
float voronoi_F4(point p) { return voronoi_Fn(p, 3); }
float voronoi_F1F2(point p) { return voronoi_FnFn(p, 0, 1); }
float voronoi_Cr(point p)
{
/* crackle type pattern, just a scale/clamp of F2-F1 */
float t = 10.0*voronoi_F1F2(p);
return (t > 1.0)? 1.0: t;
}
float voronoi_F1S(point p) { return 2.0*voronoi_F1(p) - 1.0; }
float voronoi_F2S(point p) { return 2.0*voronoi_F2(p) - 1.0; }
float voronoi_F3S(point p) { return 2.0*voronoi_F3(p) - 1.0; }
float voronoi_F4S(point p) { return 2.0*voronoi_F4(p) - 1.0; }
float voronoi_F1F2S(point p) { return 2.0*voronoi_F1F2(p) - 1.0; }
float voronoi_CrS(point p) { return 2.0*voronoi_Cr(p) - 1.0; }
/* Noise Bases */
float noise_basis(point p, string basis)
{
float result = 0.0;
if(basis == "Perlin")
result = noise(p);
if(basis == "Voronoi F1")
result = voronoi_F1S(p);
if(basis == "Voronoi F2")
result = voronoi_F2S(p);
if(basis == "Voronoi F3")
result = voronoi_F3S(p);
if(basis == "Voronoi F4")
result = voronoi_F4S(p);
if(basis == "Voronoi F2-F1")
result = voronoi_F1F2S(p);
if(basis == "Voronoi Crackle")
result = voronoi_CrS(p);
if(basis == "Cell Noise")
result = cellnoise(p);
return result;
}
/* Soft/Hard Noise */
float noise_basis_hard(point p, string basis, int hard)
{
float t = noise_basis(p, basis);
return (hard)? fabs(2.0*t - 1.0): t;
}
/* Waves */
float noise_wave(string wave, float a)
{
float result = 0.0;
if(wave == "Sine") {
result = 0.5 + 0.5*sin(a);
}
else if(wave == "Saw") {
float b = 2*M_PI;
int n = (int)(a / b);
a -= n*b;
if(a < 0) a += b;
result = a / b;
}
else if(wave == "Tri") {
float b = 2*M_PI;
float rmax = 1.0;
result = rmax - 2.0*fabs(floor((a*(1.0/b))+0.5) - (a*(1.0/b)));
}
return result;
}
/* Turbulence */
float noise_turbulence(point p, string basis, int octaves, int hard)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
int i;
for(i = 0; i <= octaves; i++) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabs(2.0*t - 1.0);
sum += t*amp;
amp *= 0.5;
fscale *= 2.0;
}
sum *= ((float)(1 << octaves)/(float)((1 << (octaves+1)) - 1));
return sum;
}
/* Utility */
float nonzero(float f, float eps)
{
float r;
if(abs(f) < eps)
r = sign(f)*eps;
else
r = f;
return r;
}