blender/intern/cycles/kernel/kernel_primitive.h
2013-01-20 14:50:50 +00:00

186 lines
5.8 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __KERNEL_ATTRIBUTE_CL__
#define __KERNEL_ATTRIBUTE_CL__
CCL_NAMESPACE_BEGIN
/* attribute lookup */
__device_inline int find_attribute(KernelGlobals *kg, ShaderData *sd, uint id, AttributeElement *elem)
{
if(sd->object == ~0)
return (int)ATTR_STD_NOT_FOUND;
#ifdef __OSL__
if (kg->osl) {
return OSLShader::find_attribute(kg, sd, id, elem);
}
else
#endif
{
/* for SVM, find attribute by unique id */
uint attr_offset = sd->object*kernel_data.bvh.attributes_map_stride;
#ifdef __HAIR__
attr_offset = (sd->segment == ~0)? attr_offset: attr_offset + ATTR_PRIM_CURVE;
#endif
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
while(attr_map.x != id) {
attr_offset += ATTR_PRIM_TYPES;
attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
}
*elem = (AttributeElement)attr_map.y;
/* return result */
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
}
}
__device float primitive_attribute_float(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float *dx, float *dy)
{
#ifdef __HAIR__
if(sd->segment == ~0)
#endif
return triangle_attribute_float(kg, sd, elem, offset, dx, dy);
#ifdef __HAIR__
else
return curve_attribute_float(kg, sd, elem, offset, dx, dy);
#endif
}
__device float3 primitive_attribute_float3(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float3 *dx, float3 *dy)
{
#ifdef __HAIR__
if(sd->segment == ~0)
#endif
return triangle_attribute_float3(kg, sd, elem, offset, dx, dy);
#ifdef __HAIR__
else
return curve_attribute_float3(kg, sd, elem, offset, dx, dy);
#endif
}
__device float3 primitive_uv(KernelGlobals *kg, ShaderData *sd)
{
AttributeElement elem_uv;
int offset_uv = find_attribute(kg, sd, ATTR_STD_UV, &elem_uv);
if(offset_uv == ATTR_STD_NOT_FOUND)
return make_float3(0.0f, 0.0f, 0.0f);
float3 uv = primitive_attribute_float3(kg, sd, elem_uv, offset_uv, NULL, NULL);
uv.z = 1.0f;
return uv;
}
__device float3 primitive_tangent(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __HAIR__
if(sd->segment != ~0)
return normalize(sd->dPdu);
#endif
/* try to create spherical tangent from generated coordinates */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, ATTR_STD_GENERATED, &attr_elem);
if(attr_offset != ATTR_STD_NOT_FOUND) {
float3 data = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
data = make_float3(-(data.y - 0.5f), (data.x - 0.5f), 0.0f);
object_normal_transform(kg, sd, &data);
return cross(sd->N, normalize(cross(data, sd->N)));
}
else {
/* otherwise use surface derivatives */
return normalize(sd->dPdu);
}
}
/* motion */
__device float4 primitive_motion_vector(KernelGlobals *kg, ShaderData *sd)
{
float3 motion_pre = sd->P, motion_post = sd->P;
/* deformation motion */
AttributeElement elem_pre, elem_post;
int offset_pre = find_attribute(kg, sd, ATTR_STD_MOTION_PRE, &elem_pre);
int offset_post = find_attribute(kg, sd, ATTR_STD_MOTION_POST, &elem_post);
if(offset_pre != ATTR_STD_NOT_FOUND)
motion_pre = primitive_attribute_float3(kg, sd, elem_pre, offset_pre, NULL, NULL);
if(offset_post != ATTR_STD_NOT_FOUND)
motion_post = primitive_attribute_float3(kg, sd, elem_post, offset_post, NULL, NULL);
/* object motion. note that depending on the mesh having motion vectors, this
* transformation was set match the world/object space of motion_pre/post */
Transform tfm;
tfm = object_fetch_vector_transform(kg, sd->object, OBJECT_VECTOR_MOTION_PRE);
motion_pre = transform_point(&tfm, motion_pre);
tfm = object_fetch_vector_transform(kg, sd->object, OBJECT_VECTOR_MOTION_POST);
motion_post = transform_point(&tfm, motion_post);
float3 P;
/* camera motion, for perspective/orthographic motion.pre/post will be a
* world-to-raster matrix, for panorama it's world-to-camera */
if (kernel_data.cam.type != CAMERA_PANORAMA) {
tfm = kernel_data.cam.worldtoraster;
P = transform_perspective(&tfm, sd->P);
tfm = kernel_data.cam.motion.pre;
motion_pre = transform_perspective(&tfm, motion_pre);
tfm = kernel_data.cam.motion.post;
motion_post = transform_perspective(&tfm, motion_post);
}
else {
tfm = kernel_data.cam.worldtocamera;
P = normalize(transform_point(&tfm, sd->P));
P = float2_to_float3(direction_to_panorama(kg, P));
P.x *= kernel_data.cam.width;
P.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion.pre;
motion_pre = normalize(transform_point(&tfm, motion_pre));
motion_pre = float2_to_float3(direction_to_panorama(kg, motion_pre));
motion_pre.x *= kernel_data.cam.width;
motion_pre.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion.post;
motion_post = normalize(transform_point(&tfm, motion_post));
motion_post = float2_to_float3(direction_to_panorama(kg, motion_post));
motion_post.x *= kernel_data.cam.width;
motion_post.y *= kernel_data.cam.height;
}
motion_pre = motion_pre - P;
motion_post = P - motion_post;
return make_float4(motion_pre.x, motion_pre.y, motion_post.x, motion_post.y);
}
CCL_NAMESPACE_END
#endif /* __KERNEL_ATTRIBUTE_CL__ */