forked from bartvdbraak/blender
0fe70b5e28
The issue was caused by the wrong attributes maps in certain circumstances after union intersections. Namely issue might have happen when more than one iteration of union was happening and it was caused by the fact that new faces might be allocated on the same address as freed face from the old mesh. Didn't find a nicer fix for this apart from correcting the whole attributes map after each union step. We could try removing attributes for the meshes which are getting deleted, but in asymptotic it's gonna to give exactly the same complexity as the current approach.
772 lines
22 KiB
C++
772 lines
22 KiB
C++
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2014 Blender Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): Blender Foundation,
|
|
* Sergey Sharybin
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "carve-util.h"
|
|
#include "carve-capi.h"
|
|
|
|
#include <cfloat>
|
|
#include <carve/csg.hpp>
|
|
#include <carve/csg_triangulator.hpp>
|
|
#include <carve/rtree.hpp>
|
|
|
|
using carve::csg::Intersections;
|
|
using carve::geom::aabb;
|
|
using carve::geom::RTreeNode;
|
|
using carve::geom3d::Vector;
|
|
using carve::math::Matrix3;
|
|
using carve::mesh::Face;
|
|
using carve::mesh::MeshSet;
|
|
using carve::triangulate::tri_idx;
|
|
using carve::triangulate::triangulate;
|
|
|
|
typedef std::map< MeshSet<3>::mesh_t*, RTreeNode<3, Face<3> *> * > RTreeCache;
|
|
typedef std::map< MeshSet<3>::mesh_t*, bool > IntersectCache;
|
|
|
|
namespace {
|
|
|
|
// Functions adopted from BLI_math.h to use Carve Vector and Matrix.
|
|
|
|
void transpose_m3__bli(double mat[3][3])
|
|
{
|
|
double t;
|
|
|
|
t = mat[0][1];
|
|
mat[0][1] = mat[1][0];
|
|
mat[1][0] = t;
|
|
t = mat[0][2];
|
|
mat[0][2] = mat[2][0];
|
|
mat[2][0] = t;
|
|
t = mat[1][2];
|
|
mat[1][2] = mat[2][1];
|
|
mat[2][1] = t;
|
|
}
|
|
|
|
void ortho_basis_v3v3_v3__bli(double r_n1[3], double r_n2[3], const double n[3])
|
|
{
|
|
const double eps = FLT_EPSILON;
|
|
const double f = (n[0] * n[0]) + (n[1] * n[1]);
|
|
|
|
if (f > eps) {
|
|
const double d = 1.0f / sqrt(f);
|
|
|
|
r_n1[0] = n[1] * d;
|
|
r_n1[1] = -n[0] * d;
|
|
r_n1[2] = 0.0f;
|
|
r_n2[0] = -n[2] * r_n1[1];
|
|
r_n2[1] = n[2] * r_n1[0];
|
|
r_n2[2] = n[0] * r_n1[1] - n[1] * r_n1[0];
|
|
}
|
|
else {
|
|
/* degenerate case */
|
|
r_n1[0] = (n[2] < 0.0f) ? -1.0f : 1.0f;
|
|
r_n1[1] = r_n1[2] = r_n2[0] = r_n2[2] = 0.0f;
|
|
r_n2[1] = 1.0f;
|
|
}
|
|
}
|
|
|
|
void axis_dominant_v3_to_m3__bli(Matrix3 *r_mat, const Vector &normal)
|
|
{
|
|
memcpy(r_mat->m[2], normal.v, sizeof(double[3]));
|
|
ortho_basis_v3v3_v3__bli(r_mat->m[0], r_mat->m[1], r_mat->m[2]);
|
|
|
|
transpose_m3__bli(r_mat->m);
|
|
}
|
|
|
|
|
|
void meshset_minmax(const MeshSet<3> *mesh,
|
|
Vector *min,
|
|
Vector *max)
|
|
{
|
|
for (size_t i = 0; i < mesh->vertex_storage.size(); ++i) {
|
|
min->x = std::min(min->x, mesh->vertex_storage[i].v.x);
|
|
min->y = std::min(min->y, mesh->vertex_storage[i].v.y);
|
|
min->z = std::min(min->z, mesh->vertex_storage[i].v.z);
|
|
max->x = std::max(max->x, mesh->vertex_storage[i].v.x);
|
|
max->y = std::max(max->y, mesh->vertex_storage[i].v.y);
|
|
max->z = std::max(max->z, mesh->vertex_storage[i].v.z);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void carve_getRescaleMinMax(const MeshSet<3> *left,
|
|
const MeshSet<3> *right,
|
|
Vector *min,
|
|
Vector *max)
|
|
{
|
|
min->x = max->x = left->vertex_storage[0].v.x;
|
|
min->y = max->y = left->vertex_storage[0].v.y;
|
|
min->z = max->z = left->vertex_storage[0].v.z;
|
|
|
|
meshset_minmax(left, min, max);
|
|
meshset_minmax(right, min, max);
|
|
|
|
// Make sure we don't scale object with zero scale.
|
|
if (std::abs(min->x - max->x) < carve::EPSILON) {
|
|
min->x = -1.0;
|
|
max->x = 1.0;
|
|
}
|
|
if (std::abs(min->y - max->y) < carve::EPSILON) {
|
|
min->y = -1.0;
|
|
max->y = 1.0;
|
|
}
|
|
if (std::abs(min->z - max->z) < carve::EPSILON) {
|
|
min->z = -1.0;
|
|
max->z = 1.0;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
void copyMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes,
|
|
std::vector<MeshSet<3>::mesh_t*> *new_meshes)
|
|
{
|
|
std::vector<MeshSet<3>::mesh_t*>::const_iterator it = meshes.begin();
|
|
new_meshes->reserve(meshes.size());
|
|
for (; it != meshes.end(); it++) {
|
|
MeshSet<3>::mesh_t *mesh = *it;
|
|
MeshSet<3>::mesh_t *new_mesh = new MeshSet<3>::mesh_t(mesh->faces);
|
|
|
|
new_meshes->push_back(new_mesh);
|
|
}
|
|
}
|
|
|
|
MeshSet<3> *meshSetFromMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes)
|
|
{
|
|
std::vector<MeshSet<3>::mesh_t*> new_meshes;
|
|
|
|
copyMeshes(meshes, &new_meshes);
|
|
|
|
return new MeshSet<3>(new_meshes);
|
|
}
|
|
|
|
MeshSet<3> *meshSetFromTwoMeshes(const std::vector<MeshSet<3>::mesh_t*> &left_meshes,
|
|
const std::vector<MeshSet<3>::mesh_t*> &right_meshes)
|
|
{
|
|
std::vector<MeshSet<3>::mesh_t*> new_meshes;
|
|
|
|
copyMeshes(left_meshes, &new_meshes);
|
|
copyMeshes(right_meshes, &new_meshes);
|
|
|
|
return new MeshSet<3>(new_meshes);
|
|
}
|
|
|
|
bool checkEdgeFaceIntersections_do(Intersections &intersections,
|
|
MeshSet<3>::face_t *face_a,
|
|
MeshSet<3>::edge_t *edge_b)
|
|
{
|
|
if (intersections.intersects(edge_b, face_a))
|
|
return true;
|
|
|
|
carve::mesh::MeshSet<3>::vertex_t::vector_t _p;
|
|
if (face_a->simpleLineSegmentIntersection(carve::geom3d::LineSegment(edge_b->v1()->v, edge_b->v2()->v), _p))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool checkEdgeFaceIntersections(Intersections &intersections,
|
|
MeshSet<3>::face_t *face_a,
|
|
MeshSet<3>::face_t *face_b)
|
|
{
|
|
MeshSet<3>::edge_t *edge_b;
|
|
|
|
edge_b = face_b->edge;
|
|
do {
|
|
if (checkEdgeFaceIntersections_do(intersections, face_a, edge_b))
|
|
return true;
|
|
edge_b = edge_b->next;
|
|
} while (edge_b != face_b->edge);
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool facesAreCoplanar(const MeshSet<3>::face_t *a, const MeshSet<3>::face_t *b)
|
|
{
|
|
carve::geom3d::Ray temp;
|
|
// XXX: Find a better definition. This may be a source of problems
|
|
// if floating point inaccuracies cause an incorrect answer.
|
|
return !carve::geom3d::planeIntersection(a->plane, b->plane, temp);
|
|
}
|
|
|
|
bool checkMeshSetInterseciton_do(Intersections &intersections,
|
|
const RTreeNode<3, Face<3> *> *a_node,
|
|
const RTreeNode<3, Face<3> *> *b_node,
|
|
bool descend_a = true)
|
|
{
|
|
if (!a_node->bbox.intersects(b_node->bbox)) {
|
|
return false;
|
|
}
|
|
|
|
if (a_node->child && (descend_a || !b_node->child)) {
|
|
for (RTreeNode<3, Face<3> *> *node = a_node->child; node; node = node->sibling) {
|
|
if (checkMeshSetInterseciton_do(intersections, node, b_node, false)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else if (b_node->child) {
|
|
for (RTreeNode<3, Face<3> *> *node = b_node->child; node; node = node->sibling) {
|
|
if (checkMeshSetInterseciton_do(intersections, a_node, node, true)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < a_node->data.size(); ++i) {
|
|
MeshSet<3>::face_t *fa = a_node->data[i];
|
|
aabb<3> aabb_a = fa->getAABB();
|
|
if (aabb_a.maxAxisSeparation(b_node->bbox) > carve::EPSILON) {
|
|
continue;
|
|
}
|
|
|
|
for (size_t j = 0; j < b_node->data.size(); ++j) {
|
|
MeshSet<3>::face_t *fb = b_node->data[j];
|
|
aabb<3> aabb_b = fb->getAABB();
|
|
if (aabb_b.maxAxisSeparation(aabb_a) > carve::EPSILON) {
|
|
continue;
|
|
}
|
|
|
|
std::pair<double, double> a_ra = fa->rangeInDirection(fa->plane.N, fa->edge->vert->v);
|
|
std::pair<double, double> b_ra = fb->rangeInDirection(fa->plane.N, fa->edge->vert->v);
|
|
if (carve::rangeSeparation(a_ra, b_ra) > carve::EPSILON) {
|
|
continue;
|
|
}
|
|
|
|
std::pair<double, double> a_rb = fa->rangeInDirection(fb->plane.N, fb->edge->vert->v);
|
|
std::pair<double, double> b_rb = fb->rangeInDirection(fb->plane.N, fb->edge->vert->v);
|
|
if (carve::rangeSeparation(a_rb, b_rb) > carve::EPSILON) {
|
|
continue;
|
|
}
|
|
|
|
if (!facesAreCoplanar(fa, fb)) {
|
|
if (checkEdgeFaceIntersections(intersections, fa, fb)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool checkMeshSetInterseciton(RTreeNode<3, Face<3> *> *rtree_a, RTreeNode<3, Face<3> *> *rtree_b)
|
|
{
|
|
Intersections intersections;
|
|
return checkMeshSetInterseciton_do(intersections, rtree_a, rtree_b);
|
|
}
|
|
|
|
void getIntersectedOperandMeshes(std::vector<MeshSet<3>::mesh_t*> *meshes,
|
|
const MeshSet<3>::aabb_t &otherAABB,
|
|
std::vector<MeshSet<3>::mesh_t*> *operandMeshes,
|
|
RTreeCache *rtree_cache,
|
|
IntersectCache *intersect_cache)
|
|
{
|
|
std::vector<MeshSet<3>::mesh_t*>::iterator it = meshes->begin();
|
|
std::vector< RTreeNode<3, Face<3> *> *> meshRTree;
|
|
|
|
while (it != meshes->end()) {
|
|
MeshSet<3>::mesh_t *mesh = *it;
|
|
bool isAdded = false;
|
|
|
|
RTreeNode<3, Face<3> *> *rtree;
|
|
bool intersects;
|
|
|
|
RTreeCache::iterator rtree_found = rtree_cache->find(mesh);
|
|
if (rtree_found != rtree_cache->end()) {
|
|
rtree = rtree_found->second;
|
|
}
|
|
else {
|
|
rtree = RTreeNode<3, Face<3> *>::construct_STR(mesh->faces.begin(), mesh->faces.end(), 4, 4);
|
|
(*rtree_cache)[mesh] = rtree;
|
|
}
|
|
|
|
IntersectCache::iterator intersect_found = intersect_cache->find(mesh);
|
|
if (intersect_found != intersect_cache->end()) {
|
|
intersects = intersect_found->second;
|
|
}
|
|
else {
|
|
intersects = rtree->bbox.intersects(otherAABB);
|
|
(*intersect_cache)[mesh] = intersects;
|
|
}
|
|
|
|
if (intersects) {
|
|
bool isIntersect = false;
|
|
|
|
std::vector<MeshSet<3>::mesh_t*>::iterator operand_it = operandMeshes->begin();
|
|
std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
|
|
for (; operand_it!=operandMeshes->end(); operand_it++, tree_it++) {
|
|
RTreeNode<3, Face<3> *> *operandRTree = *tree_it;
|
|
|
|
if (checkMeshSetInterseciton(rtree, operandRTree)) {
|
|
isIntersect = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isIntersect) {
|
|
operandMeshes->push_back(mesh);
|
|
meshRTree.push_back(rtree);
|
|
|
|
it = meshes->erase(it);
|
|
isAdded = true;
|
|
}
|
|
}
|
|
|
|
if (!isAdded) {
|
|
//delete rtree;
|
|
it++;
|
|
}
|
|
}
|
|
|
|
std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
|
|
for (; tree_it != meshRTree.end(); tree_it++) {
|
|
//delete *tree_it;
|
|
}
|
|
}
|
|
|
|
MeshSet<3> *getIntersectedOperand(std::vector<MeshSet<3>::mesh_t*> *meshes,
|
|
const MeshSet<3>::aabb_t &otherAABB,
|
|
RTreeCache *rtree_cache,
|
|
IntersectCache *intersect_cache)
|
|
{
|
|
std::vector<MeshSet<3>::mesh_t*> operandMeshes;
|
|
getIntersectedOperandMeshes(meshes, otherAABB, &operandMeshes, rtree_cache, intersect_cache);
|
|
|
|
if (operandMeshes.size() == 0)
|
|
return NULL;
|
|
|
|
return meshSetFromMeshes(operandMeshes);
|
|
}
|
|
|
|
MeshSet<3> *unionIntersectingMeshes(carve::csg::CSG *csg,
|
|
MeshSet<3> *poly,
|
|
const MeshSet<3> *other_poly,
|
|
const MeshSet<3>::aabb_t &otherAABB,
|
|
UnionIntersectionsCallback callback,
|
|
void *user_data)
|
|
{
|
|
if (poly->meshes.size() <= 1) {
|
|
return poly;
|
|
}
|
|
|
|
std::vector<MeshSet<3>::mesh_t*> orig_meshes =
|
|
std::vector<MeshSet<3>::mesh_t*>(poly->meshes.begin(), poly->meshes.end());
|
|
|
|
RTreeCache rtree_cache;
|
|
IntersectCache intersect_cache;
|
|
|
|
MeshSet<3> *left = getIntersectedOperand(&orig_meshes,
|
|
otherAABB,
|
|
&rtree_cache,
|
|
&intersect_cache);
|
|
|
|
if (!left) {
|
|
// No maniforlds which intersects another object at all.
|
|
return poly;
|
|
}
|
|
|
|
while (orig_meshes.size()) {
|
|
MeshSet<3> *right = getIntersectedOperand(&orig_meshes,
|
|
otherAABB,
|
|
&rtree_cache,
|
|
&intersect_cache);
|
|
|
|
if (!right) {
|
|
// No more intersecting manifolds which intersects other object
|
|
break;
|
|
}
|
|
|
|
try {
|
|
if (left->meshes.size()==0) {
|
|
delete left;
|
|
|
|
left = right;
|
|
}
|
|
else {
|
|
MeshSet<3> *result = csg->compute(left, right,
|
|
carve::csg::CSG::UNION,
|
|
NULL, carve::csg::CSG::CLASSIFY_EDGE);
|
|
|
|
callback(result, other_poly, user_data);
|
|
delete left;
|
|
delete right;
|
|
|
|
left = result;
|
|
}
|
|
}
|
|
catch (carve::exception e) {
|
|
std::cerr << "CSG failed, exception " << e.str() << std::endl;
|
|
|
|
MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, right->meshes);
|
|
|
|
callback(result, other_poly, user_data);
|
|
|
|
delete left;
|
|
delete right;
|
|
|
|
left = result;
|
|
}
|
|
catch (...) {
|
|
delete left;
|
|
delete right;
|
|
|
|
throw "Unknown error in Carve library";
|
|
}
|
|
}
|
|
|
|
for (RTreeCache::iterator it = rtree_cache.begin();
|
|
it != rtree_cache.end();
|
|
it++)
|
|
{
|
|
delete it->second;
|
|
}
|
|
|
|
// Append all meshes which doesn't have intersection with another operand as-is.
|
|
if (orig_meshes.size()) {
|
|
MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, orig_meshes);
|
|
|
|
delete left;
|
|
left = result;
|
|
}
|
|
|
|
return left;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// TODO(sergey): This function is to be totally re-implemented to make it
|
|
// more clear what's going on and hopefully optimize it as well.
|
|
void carve_unionIntersections(carve::csg::CSG *csg,
|
|
MeshSet<3> **left_r,
|
|
MeshSet<3> **right_r,
|
|
UnionIntersectionsCallback callback,
|
|
void *user_data)
|
|
{
|
|
MeshSet<3> *left = *left_r, *right = *right_r;
|
|
|
|
if (left->meshes.size() == 1 && right->meshes.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
MeshSet<3>::aabb_t leftAABB = left->getAABB();
|
|
MeshSet<3>::aabb_t rightAABB = right->getAABB();;
|
|
|
|
left = unionIntersectingMeshes(csg, left, right, rightAABB,
|
|
callback, user_data);
|
|
right = unionIntersectingMeshes(csg, right, left, leftAABB,
|
|
callback, user_data);
|
|
|
|
if (left != *left_r) {
|
|
delete *left_r;
|
|
}
|
|
|
|
if (right != *right_r) {
|
|
delete *right_r;
|
|
}
|
|
|
|
*left_r = left;
|
|
*right_r = right;
|
|
}
|
|
|
|
static inline void add_newell_cross_v3_v3v3(const Vector &v_prev,
|
|
const Vector &v_curr,
|
|
Vector *n)
|
|
{
|
|
(*n)[0] += (v_prev[1] - v_curr[1]) * (v_prev[2] + v_curr[2]);
|
|
(*n)[1] += (v_prev[2] - v_curr[2]) * (v_prev[0] + v_curr[0]);
|
|
(*n)[2] += (v_prev[0] - v_curr[0]) * (v_prev[1] + v_curr[1]);
|
|
}
|
|
|
|
// Axis matrix is being set for non-flat ngons only.
|
|
bool carve_checkPolyPlanarAndGetNormal(const std::vector<MeshSet<3>::vertex_t> &vertex_storage,
|
|
const int verts_per_poly,
|
|
const int *verts_of_poly,
|
|
Matrix3 *axis_matrix_r)
|
|
{
|
|
if (verts_per_poly == 3) {
|
|
// Triangles are always planar.
|
|
return true;
|
|
}
|
|
else if (verts_per_poly == 4) {
|
|
// Presumably faster than using generig n-gon check for quads.
|
|
|
|
const Vector &v1 = vertex_storage[verts_of_poly[0]].v,
|
|
&v2 = vertex_storage[verts_of_poly[1]].v,
|
|
&v3 = vertex_storage[verts_of_poly[2]].v,
|
|
&v4 = vertex_storage[verts_of_poly[3]].v;
|
|
|
|
Vector vec1, vec2, vec3, cross;
|
|
|
|
vec1 = v2 - v1;
|
|
vec2 = v4 - v1;
|
|
vec3 = v3 - v1;
|
|
|
|
cross = carve::geom::cross(vec1, vec2);
|
|
|
|
double production = carve::geom::dot(cross, vec3);
|
|
|
|
// TODO(sergey): Check on whether we could have length-independent
|
|
// magnitude here.
|
|
double magnitude = 1e-3 * cross.length2();
|
|
|
|
return fabs(production) < magnitude;
|
|
}
|
|
else {
|
|
const Vector *vert_prev = &vertex_storage[verts_of_poly[verts_per_poly - 1]].v;
|
|
const Vector *vert_curr = &vertex_storage[verts_of_poly[0]].v;
|
|
|
|
Vector normal = carve::geom::VECTOR(0.0, 0.0, 0.0);
|
|
for (int i = 0; i < verts_per_poly; i++) {
|
|
add_newell_cross_v3_v3v3(*vert_prev, *vert_curr, &normal);
|
|
vert_prev = vert_curr;
|
|
vert_curr = &vertex_storage[verts_of_poly[(i + 1) % verts_per_poly]].v;
|
|
}
|
|
|
|
if (normal.length2() < FLT_EPSILON) {
|
|
// Degenerated face, couldn't triangulate properly anyway.
|
|
return true;
|
|
}
|
|
else {
|
|
double magnitude = normal.length2();
|
|
|
|
normal.normalize();
|
|
axis_dominant_v3_to_m3__bli(axis_matrix_r, normal);
|
|
|
|
Vector first_projected = *axis_matrix_r * vertex_storage[verts_of_poly[0]].v;
|
|
double min_z = first_projected[2], max_z = first_projected[2];
|
|
|
|
for (int i = 1; i < verts_per_poly; i++) {
|
|
const Vector &vertex = vertex_storage[verts_of_poly[i]].v;
|
|
Vector projected = *axis_matrix_r * vertex;
|
|
if (projected[2] < min_z) {
|
|
min_z = projected[2];
|
|
}
|
|
if (projected[2] > max_z) {
|
|
max_z = projected[2];
|
|
}
|
|
}
|
|
|
|
if (std::abs(min_z - max_z) > FLT_EPSILON * magnitude) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
int triangulateNGon_carveTriangulator(const std::vector<MeshSet<3>::vertex_t> &vertex_storage,
|
|
const int verts_per_poly,
|
|
const int *verts_of_poly,
|
|
const Matrix3 &axis_matrix,
|
|
std::vector<tri_idx> *triangles)
|
|
{
|
|
// Project vertices to 2D plane.
|
|
Vector projected;
|
|
std::vector<carve::geom::vector<2> > poly_2d;
|
|
poly_2d.reserve(verts_per_poly);
|
|
for (int i = 0; i < verts_per_poly; ++i) {
|
|
projected = axis_matrix * vertex_storage[verts_of_poly[i]].v;
|
|
poly_2d.push_back(carve::geom::VECTOR(projected[0], projected[1]));
|
|
}
|
|
|
|
carve::triangulate::triangulate(poly_2d, *triangles);
|
|
carve::triangulate::improve(poly_2d, *triangles);
|
|
|
|
return triangles->size();
|
|
}
|
|
|
|
int triangulateNGon_importerTriangulator(struct ImportMeshData *import_data,
|
|
CarveMeshImporter *mesh_importer,
|
|
const std::vector<MeshSet<3>::vertex_t> &vertex_storage,
|
|
const int verts_per_poly,
|
|
const int *verts_of_poly,
|
|
const Matrix3 &axis_matrix,
|
|
std::vector<tri_idx> *triangles)
|
|
{
|
|
typedef float Vector2D[2];
|
|
typedef unsigned int Triangle[3];
|
|
|
|
// Project vertices to 2D plane.
|
|
Vector2D *poly_2d = new Vector2D[verts_per_poly];
|
|
Vector projected;
|
|
for (int i = 0; i < verts_per_poly; ++i) {
|
|
projected = axis_matrix * vertex_storage[verts_of_poly[i]].v;
|
|
poly_2d[i][0] = projected[0];
|
|
poly_2d[i][1] = projected[1];
|
|
}
|
|
|
|
Triangle *api_triangles = new Triangle[verts_per_poly - 2];
|
|
int num_triangles =
|
|
mesh_importer->triangulate2DPoly(import_data,
|
|
poly_2d,
|
|
verts_per_poly,
|
|
api_triangles);
|
|
|
|
triangles->reserve(num_triangles);
|
|
for (int i = 0; i < num_triangles; ++i) {
|
|
triangles->push_back(tri_idx(api_triangles[i][0],
|
|
api_triangles[i][1],
|
|
api_triangles[i][2]));
|
|
}
|
|
|
|
delete [] poly_2d;
|
|
delete [] api_triangles;
|
|
|
|
return num_triangles;
|
|
}
|
|
|
|
template <typename T>
|
|
void sortThreeNumbers(T &a, T &b, T &c)
|
|
{
|
|
if (a > b)
|
|
std::swap(a, b);
|
|
if (b > c)
|
|
std::swap(b, c);
|
|
if (a > b)
|
|
std::swap(a, b);
|
|
}
|
|
|
|
bool pushTriangle(int v1, int v2, int v3,
|
|
std::vector<int> *face_indices,
|
|
TrianglesStorage *triangles_storage)
|
|
{
|
|
|
|
tri_idx triangle(v1, v2, v3);
|
|
sortThreeNumbers(triangle.a, triangle.b, triangle.c);
|
|
|
|
assert(triangle.a < triangle.b);
|
|
assert(triangle.b < triangle.c);
|
|
|
|
if (triangles_storage->find(triangle) == triangles_storage->end()) {
|
|
face_indices->push_back(v1);
|
|
face_indices->push_back(v2);
|
|
face_indices->push_back(v3);
|
|
|
|
triangles_storage->insert(triangle);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int carve_triangulatePoly(struct ImportMeshData *import_data,
|
|
CarveMeshImporter *mesh_importer,
|
|
const std::vector<MeshSet<3>::vertex_t> &vertex_storage,
|
|
const int verts_per_poly,
|
|
const int *verts_of_poly,
|
|
const Matrix3 &axis_matrix,
|
|
std::vector<int> *face_indices,
|
|
TrianglesStorage *triangles_storage)
|
|
{
|
|
int num_triangles = 0;
|
|
|
|
assert(verts_per_poly > 3);
|
|
|
|
if (verts_per_poly == 4) {
|
|
// Quads we triangulate by 1-3 diagonal, it is an original behavior
|
|
// of boolean modifier.
|
|
//
|
|
// TODO(sergey): Consider using shortest diagonal here. However
|
|
// display code in Blende use static 1-3 split, so some experiments
|
|
// are needed here.
|
|
if (pushTriangle(verts_of_poly[0],
|
|
verts_of_poly[1],
|
|
verts_of_poly[2],
|
|
face_indices,
|
|
triangles_storage))
|
|
{
|
|
num_triangles++;
|
|
}
|
|
|
|
if (pushTriangle(verts_of_poly[0],
|
|
verts_of_poly[2],
|
|
verts_of_poly[3],
|
|
face_indices,
|
|
triangles_storage))
|
|
{
|
|
num_triangles++;
|
|
}
|
|
}
|
|
else {
|
|
std::vector<tri_idx> triangles;
|
|
triangles.reserve(verts_per_poly - 2);
|
|
|
|
// Make triangulator callback optional so we could do some tests
|
|
// in the future.
|
|
if (mesh_importer->triangulate2DPoly) {
|
|
triangulateNGon_importerTriangulator(import_data,
|
|
mesh_importer,
|
|
vertex_storage,
|
|
verts_per_poly,
|
|
verts_of_poly,
|
|
axis_matrix,
|
|
&triangles);
|
|
}
|
|
else {
|
|
triangulateNGon_carveTriangulator(vertex_storage,
|
|
verts_per_poly,
|
|
verts_of_poly,
|
|
axis_matrix,
|
|
&triangles);
|
|
}
|
|
|
|
for (int i = 0; i < triangles.size(); ++i) {
|
|
int v1 = triangles[i].a,
|
|
v2 = triangles[i].b,
|
|
v3 = triangles[i].c;
|
|
|
|
// Sanity check of the triangle.
|
|
assert(v1 != v2);
|
|
assert(v1 != v3);
|
|
assert(v2 != v3);
|
|
assert(v1 < verts_per_poly);
|
|
assert(v2 < verts_per_poly);
|
|
assert(v3 < verts_per_poly);
|
|
|
|
if (pushTriangle(verts_of_poly[v1],
|
|
verts_of_poly[v2],
|
|
verts_of_poly[v3],
|
|
face_indices,
|
|
triangles_storage))
|
|
{
|
|
num_triangles++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return num_triangles;
|
|
}
|