blender/intern/cycles/device/device_memory.cpp
Patrick Mours 3df90de6c2 Cycles: Add NanoVDB support for rendering volumes
NanoVDB is a platform-independent sparse volume data structure that makes it possible to
use OpenVDB volumes on the GPU. This patch uses it for volume rendering in Cycles,
replacing the previous usage of dense 3D textures.

Since it has a big impact on memory usage and performance and changes the OpenVDB
branch used for the rest of Blender as well, this is not enabled by default yet, which will
happen only after 2.82 was branched off. To enable it, build both dependencies and Blender
itself with the "WITH_NANOVDB" CMake option.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D8794
2020-10-05 15:03:30 +02:00

237 lines
5.3 KiB
C++

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/device_memory.h"
#include "device/device.h"
CCL_NAMESPACE_BEGIN
/* Device Memory */
device_memory::device_memory(Device *device, const char *name, MemoryType type)
: data_type(device_type_traits<uchar>::data_type),
data_elements(device_type_traits<uchar>::num_elements),
data_size(0),
device_size(0),
data_width(0),
data_height(0),
data_depth(0),
type(type),
name(name),
device(device),
device_pointer(0),
host_pointer(0),
shared_pointer(0),
shared_counter(0)
{
}
device_memory::~device_memory()
{
assert(shared_pointer == 0);
assert(shared_counter == 0);
}
void *device_memory::host_alloc(size_t size)
{
if (!size) {
return 0;
}
void *ptr = util_aligned_malloc(size, MIN_ALIGNMENT_CPU_DATA_TYPES);
if (ptr) {
util_guarded_mem_alloc(size);
}
else {
throw std::bad_alloc();
}
return ptr;
}
void device_memory::host_free()
{
if (host_pointer) {
util_guarded_mem_free(memory_size());
util_aligned_free((void *)host_pointer);
host_pointer = 0;
}
}
void device_memory::device_alloc()
{
assert(!device_pointer && type != MEM_TEXTURE && type != MEM_GLOBAL);
device->mem_alloc(*this);
}
void device_memory::device_free()
{
if (device_pointer) {
device->mem_free(*this);
}
}
void device_memory::device_copy_to()
{
if (host_pointer) {
device->mem_copy_to(*this);
}
}
void device_memory::device_copy_from(int y, int w, int h, int elem)
{
assert(type != MEM_TEXTURE && type != MEM_READ_ONLY && type != MEM_GLOBAL);
device->mem_copy_from(*this, y, w, h, elem);
}
void device_memory::device_zero()
{
if (data_size) {
device->mem_zero(*this);
}
}
void device_memory::swap_device(Device *new_device,
size_t new_device_size,
device_ptr new_device_ptr)
{
original_device = device;
original_device_size = device_size;
original_device_ptr = device_pointer;
device = new_device;
device_size = new_device_size;
device_pointer = new_device_ptr;
}
void device_memory::restore_device()
{
device = original_device;
device_size = original_device_size;
device_pointer = original_device_ptr;
}
bool device_memory::is_resident(Device *sub_device) const
{
return device->is_resident(device_pointer, sub_device);
}
/* Device Sub Ptr */
device_sub_ptr::device_sub_ptr(device_memory &mem, int offset, int size) : device(mem.device)
{
ptr = device->mem_alloc_sub_ptr(mem, offset, size);
}
device_sub_ptr::~device_sub_ptr()
{
device->mem_free_sub_ptr(ptr);
}
/* Device Texture */
device_texture::device_texture(Device *device,
const char *name,
const uint slot,
ImageDataType image_data_type,
InterpolationType interpolation,
ExtensionType extension)
: device_memory(device, name, MEM_TEXTURE), slot(slot)
{
switch (image_data_type) {
case IMAGE_DATA_TYPE_FLOAT4:
data_type = TYPE_FLOAT;
data_elements = 4;
break;
case IMAGE_DATA_TYPE_FLOAT:
data_type = TYPE_FLOAT;
data_elements = 1;
break;
case IMAGE_DATA_TYPE_BYTE4:
data_type = TYPE_UCHAR;
data_elements = 4;
break;
case IMAGE_DATA_TYPE_BYTE:
case IMAGE_DATA_TYPE_NANOVDB_FLOAT:
case IMAGE_DATA_TYPE_NANOVDB_FLOAT3:
data_type = TYPE_UCHAR;
data_elements = 1;
break;
case IMAGE_DATA_TYPE_HALF4:
data_type = TYPE_HALF;
data_elements = 4;
break;
case IMAGE_DATA_TYPE_HALF:
data_type = TYPE_HALF;
data_elements = 1;
break;
case IMAGE_DATA_TYPE_USHORT4:
data_type = TYPE_UINT16;
data_elements = 4;
break;
case IMAGE_DATA_TYPE_USHORT:
data_type = TYPE_UINT16;
data_elements = 1;
break;
case IMAGE_DATA_NUM_TYPES:
assert(0);
return;
}
memset(&info, 0, sizeof(info));
info.data_type = image_data_type;
info.interpolation = interpolation;
info.extension = extension;
}
device_texture::~device_texture()
{
device_free();
host_free();
}
/* Host memory allocation. */
void *device_texture::alloc(const size_t width, const size_t height, const size_t depth)
{
const size_t new_size = size(width, height, depth);
if (new_size != data_size) {
device_free();
host_free();
host_pointer = host_alloc(data_elements * datatype_size(data_type) * new_size);
assert(device_pointer == 0);
}
data_size = new_size;
data_width = width;
data_height = height;
data_depth = depth;
info.width = width;
info.height = height;
info.depth = depth;
return host_pointer;
}
void device_texture::copy_to_device()
{
device_copy_to();
}
CCL_NAMESPACE_END