blender/intern/cycles/kernel/kernel_accumulate.h
Dalai Felinto eec3eaba08 Cycles Bake
Expand Cycles to use the new baking API in Blender.

It works on the selected object, and the panel can be accessed in the Render panel (similar to where it is for the Blender Internal).

It bakes for the active texture of each material of the object. The active texture is currently defined as the active Image Texture node present in the material nodetree. If you don't want the baking to override an existent material, make sure the active Image Texture node is not connected to the nodetree. The active texture is also the texture shown in the viewport in the rendered mode.

Remember to save your images after the baking is complete.

Note: Bake currently only works in the CPU
Note: This is not supported by Cycles standalone because a lot of the work is done in Blender as part of the operator only, not the engine (Cycles).

Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Bake

Supported Passes:
-----------------
Data Passes
 * Normal
 * UV
 * Diffuse/Glossy/Transmission/Subsurface/Emit Color

Light Passes
 * AO
 * Combined
 * Shadow
 * Diffuse/Glossy/Transmission/Subsurface/Emit Direct/Indirect
 * Environment

Review: D421
Reviewed by: Campbell Barton, Brecht van Lommel, Sergey Sharybin, Thomas Dinge

Original design by Brecht van Lommel.

The entire commit history can be found on the branch: bake-cycles
2014-05-02 21:19:09 -03:00

433 lines
13 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* BSDF Eval
*
* BSDF evaluation result, split per BSDF type. This is used to accumulate
* render passes separately. */
ccl_device_inline void bsdf_eval_init(BsdfEval *eval, ClosureType type, float3 value, int use_light_pass)
{
#ifdef __PASSES__
eval->use_light_pass = use_light_pass;
if(eval->use_light_pass) {
eval->diffuse = make_float3(0.0f, 0.0f, 0.0f);
eval->glossy = make_float3(0.0f, 0.0f, 0.0f);
eval->transmission = make_float3(0.0f, 0.0f, 0.0f);
eval->transparent = make_float3(0.0f, 0.0f, 0.0f);
eval->subsurface = make_float3(0.0f, 0.0f, 0.0f);
if(type == CLOSURE_BSDF_TRANSPARENT_ID)
eval->transparent = value;
else if(CLOSURE_IS_BSDF_DIFFUSE(type) || CLOSURE_IS_PHASE(type))
eval->diffuse = value;
else if(CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy = value;
else if(CLOSURE_IS_BSDF_TRANSMISSION(type))
eval->transmission = value;
else if(CLOSURE_IS_BSDF_BSSRDF(type))
eval->subsurface = value;
}
else
eval->diffuse = value;
#else
*eval = value;
#endif
}
ccl_device_inline void bsdf_eval_accum(BsdfEval *eval, ClosureType type, float3 value)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
if(CLOSURE_IS_BSDF_DIFFUSE(type) || CLOSURE_IS_PHASE(type))
eval->diffuse += value;
else if(CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy += value;
else if(CLOSURE_IS_BSDF_TRANSMISSION(type))
eval->transmission += value;
else if(CLOSURE_IS_BSDF_BSSRDF(type))
eval->subsurface += value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
eval->diffuse += value;
#else
*eval += value;
#endif
}
ccl_device_inline bool bsdf_eval_is_zero(BsdfEval *eval)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
return is_zero(eval->diffuse)
&& is_zero(eval->glossy)
&& is_zero(eval->transmission)
&& is_zero(eval->transparent)
&& is_zero(eval->subsurface);
}
else
return is_zero(eval->diffuse);
#else
return is_zero(*eval);
#endif
}
ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float3 value)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
eval->diffuse *= value;
eval->glossy *= value;
eval->transmission *= value;
eval->subsurface *= value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
eval->diffuse *= value;
#else
*eval *= value;
#endif
}
/* Path Radiance
*
* We accumulate different render passes separately. After summing at the end
* to get the combined result, it should be identical. We definte directly
* visible as the first non-transparent hit, while indirectly visible are the
* bounces after that. */
ccl_device_inline void path_radiance_init(PathRadiance *L, int use_light_pass)
{
/* clear all */
#ifdef __PASSES__
L->use_light_pass = use_light_pass;
if(use_light_pass) {
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
L->direct_throughput = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->color_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->color_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->color_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->color_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->direct_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->emission = make_float3(0.0f, 0.0f, 0.0f);
L->background = make_float3(0.0f, 0.0f, 0.0f);
L->ao = make_float3(0.0f, 0.0f, 0.0f);
L->shadow = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
L->mist = 0.0f;
}
else
L->emission = make_float3(0.0f, 0.0f, 0.0f);
#else
*L = make_float3(0.0f, 0.0f, 0.0f);
#endif
}
ccl_device_inline void path_radiance_bsdf_bounce(PathRadiance *L, float3 *throughput,
BsdfEval *bsdf_eval, float bsdf_pdf, int bounce, int bsdf_label)
{
float inverse_pdf = 1.0f/bsdf_pdf;
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0 && !(bsdf_label & LABEL_TRANSPARENT)) {
/* first on directly visible surface */
float3 value = *throughput*inverse_pdf;
L->path_diffuse = bsdf_eval->diffuse*value;
L->path_glossy = bsdf_eval->glossy*value;
L->path_transmission = bsdf_eval->transmission*value;
L->path_subsurface = bsdf_eval->subsurface*value;
*throughput = L->path_diffuse + L->path_glossy + L->path_transmission + L->path_subsurface;
L->direct_throughput = *throughput;
}
else {
/* transparent bounce before first hit, or indirectly visible through BSDF */
float3 sum = (bsdf_eval->diffuse + bsdf_eval->glossy + bsdf_eval->transmission + bsdf_eval->transparent + bsdf_eval->subsurface)*inverse_pdf;
*throughput *= sum;
}
}
else
*throughput *= bsdf_eval->diffuse*inverse_pdf;
#else
*throughput *= *bsdf_eval*inverse_pdf;
#endif
}
ccl_device_inline void path_radiance_accum_emission(PathRadiance *L, float3 throughput, float3 value, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0)
L->emission += throughput*value;
else if(bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
}
else
L->emission += throughput*value;
#else
*L += throughput*value;
#endif
}
ccl_device_inline void path_radiance_accum_ao(PathRadiance *L, float3 throughput, float3 alpha, float3 bsdf, float3 ao, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf*ao;
L->ao += alpha*throughput*ao;
}
else {
/* indirectly visible lighting after BSDF bounce */
L->indirect += throughput*bsdf*ao;
}
}
else
L->emission += throughput*bsdf*ao;
#else
*L += throughput*bsdf*ao;
#endif
}
ccl_device_inline void path_radiance_accum_light(PathRadiance *L, float3 throughput, BsdfEval *bsdf_eval, float3 shadow, float shadow_fac, int bounce, bool is_lamp)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf_eval->diffuse*shadow;
L->direct_glossy += throughput*bsdf_eval->glossy*shadow;
L->direct_transmission += throughput*bsdf_eval->transmission*shadow;
L->direct_subsurface += throughput*bsdf_eval->subsurface*shadow;
if(is_lamp) {
L->shadow.x += shadow.x*shadow_fac;
L->shadow.y += shadow.y*shadow_fac;
L->shadow.z += shadow.z*shadow_fac;
}
}
else {
/* indirectly visible lighting after BSDF bounce */
float3 sum = bsdf_eval->diffuse + bsdf_eval->glossy + bsdf_eval->transmission + bsdf_eval->subsurface;
L->indirect += throughput*sum*shadow;
}
}
else
L->emission += throughput*bsdf_eval->diffuse*shadow;
#else
*L += throughput*(*bsdf_eval)*shadow;
#endif
}
ccl_device_inline void path_radiance_accum_background(PathRadiance *L, float3 throughput, float3 value, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0)
L->background += throughput*value;
else if(bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
}
else
L->emission += throughput*value;
#else
*L += throughput*value;
#endif
}
ccl_device_inline void path_radiance_sum_indirect(PathRadiance *L)
{
#ifdef __PASSES__
/* this division is a bit ugly, but means we only have to keep track of
* only a single throughput further along the path, here we recover just
* the indirect path that is not influenced by any particular BSDF type */
if(L->use_light_pass) {
L->direct_emission = safe_divide_color(L->direct_emission, L->direct_throughput);
L->direct_diffuse += L->path_diffuse*L->direct_emission;
L->direct_glossy += L->path_glossy*L->direct_emission;
L->direct_transmission += L->path_transmission*L->direct_emission;
L->direct_subsurface += L->path_subsurface*L->direct_emission;
L->indirect = safe_divide_color(L->indirect, L->direct_throughput);
L->indirect_diffuse += L->path_diffuse*L->indirect;
L->indirect_glossy += L->path_glossy*L->indirect;
L->indirect_transmission += L->path_transmission*L->indirect;
L->indirect_subsurface += L->path_subsurface*L->indirect;
}
#endif
}
ccl_device_inline void path_radiance_reset_indirect(PathRadiance *L)
{
#ifdef __PASSES__
if(L->use_light_pass) {
L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
}
#endif
}
ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadiance *L)
{
float3 L_sum, L_direct, L_indirect;
float clamp_direct = kernel_data.integrator.sample_clamp_direct;
float clamp_indirect = kernel_data.integrator.sample_clamp_indirect;
/* Light Passes are used */
#ifdef __PASSES__
if(L->use_light_pass) {
path_radiance_sum_indirect(L);
L_direct = L->direct_diffuse + L->direct_glossy + L->direct_transmission + L->direct_subsurface + L->emission;
L_indirect = L->indirect_diffuse + L->indirect_glossy + L->indirect_transmission + L->indirect_subsurface;
if(!kernel_data.background.transparent)
L_direct += L->background;
L_sum = L_direct + L_indirect;
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
/* Reject invalid value */
if(!isfinite(sum)) {
L_sum = make_float3(0.0f, 0.0f, 0.0f);
L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->direct_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->emission = make_float3(0.0f, 0.0f, 0.0f);
}
/* Clamp direct and indirect samples */
#ifdef __CLAMP_SAMPLE__
else if(sum > clamp_direct || sum > clamp_indirect) {
float scale;
/* Direct */
float sum_direct = fabsf(L_direct.x) + fabsf(L_direct.y) + fabsf(L_direct.z);
if(sum_direct > clamp_direct) {
scale = clamp_direct/sum_direct;
L_direct *= scale;
L->direct_diffuse *= scale;
L->direct_glossy *= scale;
L->direct_transmission *= scale;
L->direct_subsurface *= scale;
L->emission *= scale;
L->background *= scale;
}
/* Indirect */
float sum_indirect = fabsf(L_indirect.x) + fabsf(L_indirect.y) + fabsf(L_indirect.z);
if(sum_indirect > clamp_indirect) {
scale = clamp_indirect/sum_indirect;
L_indirect *= scale;
L->indirect_diffuse *= scale;
L->indirect_glossy *= scale;
L->indirect_transmission *= scale;
L->indirect_subsurface *= scale;
}
/* Sum again, after clamping */
L_sum = L_direct + L_indirect;
}
#endif
return L_sum;
}
/* No Light Passes */
else
L_sum = L->emission;
#else
L_sum = *L;
#endif
/* Reject invalid value */
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
if(!isfinite(sum))
L_sum = make_float3(0.0f, 0.0f, 0.0f);
return L_sum;
}
ccl_device_inline void path_radiance_accum_sample(PathRadiance *L, PathRadiance *L_sample, int num_samples)
{
float fac = 1.0f/num_samples;
L->direct_diffuse += L_sample->direct_diffuse*fac;
L->direct_glossy += L_sample->direct_glossy*fac;
L->direct_transmission += L_sample->direct_transmission*fac;
L->direct_subsurface += L_sample->direct_subsurface*fac;
L->indirect_diffuse += L_sample->indirect_diffuse*fac;
L->indirect_glossy += L_sample->indirect_glossy*fac;
L->indirect_transmission += L_sample->indirect_transmission*fac;
L->indirect_subsurface += L_sample->indirect_subsurface*fac;
L->emission += L_sample->emission*fac;
L->background += L_sample->background*fac;
L->ao += L_sample->ao*fac;
L->shadow += L_sample->shadow*fac;
L->mist += L_sample->mist*fac;
}
CCL_NAMESPACE_END