blender/intern/cycles/kernel/kernel_shader.h
Stefan Werner e58c6cf0c6 Cycles: Added Cryptomatte output.
This allows for extra output passes that encode automatic object and material masks
for the entire scene. It is an implementation of the Cryptomatte standard as
introduced by Psyop. A good future extension would be to add a manifest to the
export and to do plenty of testing to ensure that it is fully compatible with other
renderers and compositing programs that use Cryptomatte.

Internally, it adds the ability for Cycles to have several passes of the same type
that are distinguished by their name.

Differential Revision: https://developer.blender.org/D3538
2018-10-28 05:37:41 -04:00

1285 lines
33 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* ShaderData, used in four steps:
*
* Setup from incoming ray, sampled position and background.
* Execute for surface, volume or displacement.
* Evaluate one or more closures.
* Release.
*
*/
#include "kernel/closure/alloc.h"
#include "kernel/closure/bsdf_util.h"
#include "kernel/closure/bsdf.h"
#include "kernel/closure/emissive.h"
#include "kernel/svm/svm.h"
CCL_NAMESPACE_BEGIN
/* ShaderData setup from incoming ray */
#ifdef __OBJECT_MOTION__
ccl_device void shader_setup_object_transforms(KernelGlobals *kg, ShaderData *sd, float time)
{
if(sd->object_flag & SD_OBJECT_MOTION) {
sd->ob_tfm = object_fetch_transform_motion(kg, sd->object, time);
sd->ob_itfm = transform_quick_inverse(sd->ob_tfm);
}
else {
sd->ob_tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
sd->ob_itfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
}
}
#endif
ccl_device_noinline void shader_setup_from_ray(KernelGlobals *kg,
ShaderData *sd,
const Intersection *isect,
const Ray *ray)
{
#ifdef __INSTANCING__
sd->object = (isect->object == PRIM_NONE)? kernel_tex_fetch(__prim_object, isect->prim): isect->object;
#endif
sd->lamp = LAMP_NONE;
sd->type = isect->type;
sd->flag = 0;
sd->object_flag = kernel_tex_fetch(__object_flag,
sd->object);
/* matrices and time */
#ifdef __OBJECT_MOTION__
shader_setup_object_transforms(kg, sd, ray->time);
#endif
sd->time = ray->time;
sd->prim = kernel_tex_fetch(__prim_index, isect->prim);
sd->ray_length = isect->t;
#ifdef __UV__
sd->u = isect->u;
sd->v = isect->v;
#endif
#ifdef __HAIR__
if(sd->type & PRIMITIVE_ALL_CURVE) {
/* curve */
float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
sd->shader = __float_as_int(curvedata.z);
sd->P = curve_refine(kg, sd, isect, ray);
}
else
#endif
if(sd->type & PRIMITIVE_TRIANGLE) {
/* static triangle */
float3 Ng = triangle_normal(kg, sd);
sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);
/* vectors */
sd->P = triangle_refine(kg, sd, isect, ray);
sd->Ng = Ng;
sd->N = Ng;
/* smooth normal */
if(sd->shader & SHADER_SMOOTH_NORMAL)
sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);
#ifdef __DPDU__
/* dPdu/dPdv */
triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
#endif
}
else {
/* motion triangle */
motion_triangle_shader_setup(kg, sd, isect, ray, false);
}
sd->I = -ray->D;
sd->flag |= kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).flags;
#ifdef __INSTANCING__
if(isect->object != OBJECT_NONE) {
/* instance transform */
object_normal_transform_auto(kg, sd, &sd->N);
object_normal_transform_auto(kg, sd, &sd->Ng);
# ifdef __DPDU__
object_dir_transform_auto(kg, sd, &sd->dPdu);
object_dir_transform_auto(kg, sd, &sd->dPdv);
# endif
}
#endif
/* backfacing test */
bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);
if(backfacing) {
sd->flag |= SD_BACKFACING;
sd->Ng = -sd->Ng;
sd->N = -sd->N;
#ifdef __DPDU__
sd->dPdu = -sd->dPdu;
sd->dPdv = -sd->dPdv;
#endif
}
#ifdef __RAY_DIFFERENTIALS__
/* differentials */
differential_transfer(&sd->dP, ray->dP, ray->D, ray->dD, sd->Ng, isect->t);
differential_incoming(&sd->dI, ray->dD);
differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng);
#endif
}
/* ShaderData setup from BSSRDF scatter */
#ifdef __SUBSURFACE__
# ifndef __KERNEL_CUDA__
ccl_device
# else
ccl_device_inline
# endif
void shader_setup_from_subsurface(
KernelGlobals *kg,
ShaderData *sd,
const Intersection *isect,
const Ray *ray)
{
const bool backfacing = sd->flag & SD_BACKFACING;
/* object, matrices, time, ray_length stay the same */
sd->flag = 0;
sd->object_flag = kernel_tex_fetch(__object_flag, sd->object);
sd->prim = kernel_tex_fetch(__prim_index, isect->prim);
sd->type = isect->type;
# ifdef __UV__
sd->u = isect->u;
sd->v = isect->v;
# endif
/* fetch triangle data */
if(sd->type == PRIMITIVE_TRIANGLE) {
float3 Ng = triangle_normal(kg, sd);
sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);
/* static triangle */
sd->P = triangle_refine_local(kg, sd, isect, ray);
sd->Ng = Ng;
sd->N = Ng;
if(sd->shader & SHADER_SMOOTH_NORMAL)
sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);
# ifdef __DPDU__
/* dPdu/dPdv */
triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
# endif
}
else {
/* motion triangle */
motion_triangle_shader_setup(kg, sd, isect, ray, true);
}
sd->flag |= kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).flags;
# ifdef __INSTANCING__
if(isect->object != OBJECT_NONE) {
/* instance transform */
object_normal_transform_auto(kg, sd, &sd->N);
object_normal_transform_auto(kg, sd, &sd->Ng);
# ifdef __DPDU__
object_dir_transform_auto(kg, sd, &sd->dPdu);
object_dir_transform_auto(kg, sd, &sd->dPdv);
# endif
}
# endif
/* backfacing test */
if(backfacing) {
sd->flag |= SD_BACKFACING;
sd->Ng = -sd->Ng;
sd->N = -sd->N;
# ifdef __DPDU__
sd->dPdu = -sd->dPdu;
sd->dPdv = -sd->dPdv;
# endif
}
/* should not get used in principle as the shading will only use a diffuse
* BSDF, but the shader might still access it */
sd->I = sd->N;
# ifdef __RAY_DIFFERENTIALS__
/* differentials */
differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng);
/* don't modify dP and dI */
# endif
}
#endif
/* ShaderData setup from position sampled on mesh */
ccl_device_inline void shader_setup_from_sample(KernelGlobals *kg,
ShaderData *sd,
const float3 P,
const float3 Ng,
const float3 I,
int shader, int object, int prim,
float u, float v, float t,
float time,
bool object_space,
int lamp)
{
/* vectors */
sd->P = P;
sd->N = Ng;
sd->Ng = Ng;
sd->I = I;
sd->shader = shader;
if(prim != PRIM_NONE)
sd->type = PRIMITIVE_TRIANGLE;
else if(lamp != LAMP_NONE)
sd->type = PRIMITIVE_LAMP;
else
sd->type = PRIMITIVE_NONE;
/* primitive */
#ifdef __INSTANCING__
sd->object = object;
#endif
sd->lamp = LAMP_NONE;
/* currently no access to bvh prim index for strand sd->prim*/
sd->prim = prim;
#ifdef __UV__
sd->u = u;
sd->v = v;
#endif
sd->time = time;
sd->ray_length = t;
sd->flag = kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).flags;
sd->object_flag = 0;
if(sd->object != OBJECT_NONE) {
sd->object_flag |= kernel_tex_fetch(__object_flag,
sd->object);
#ifdef __OBJECT_MOTION__
shader_setup_object_transforms(kg, sd, time);
}
else if(lamp != LAMP_NONE) {
sd->ob_tfm = lamp_fetch_transform(kg, lamp, false);
sd->ob_itfm = lamp_fetch_transform(kg, lamp, true);
sd->lamp = lamp;
#endif
}
/* transform into world space */
if(object_space) {
object_position_transform_auto(kg, sd, &sd->P);
object_normal_transform_auto(kg, sd, &sd->Ng);
sd->N = sd->Ng;
object_dir_transform_auto(kg, sd, &sd->I);
}
if(sd->type & PRIMITIVE_TRIANGLE) {
/* smooth normal */
if(sd->shader & SHADER_SMOOTH_NORMAL) {
sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);
#ifdef __INSTANCING__
if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_normal_transform_auto(kg, sd, &sd->N);
}
#endif
}
/* dPdu/dPdv */
#ifdef __DPDU__
triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
# ifdef __INSTANCING__
if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_dir_transform_auto(kg, sd, &sd->dPdu);
object_dir_transform_auto(kg, sd, &sd->dPdv);
}
# endif
#endif
}
else {
#ifdef __DPDU__
sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif
}
/* backfacing test */
if(sd->prim != PRIM_NONE) {
bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);
if(backfacing) {
sd->flag |= SD_BACKFACING;
sd->Ng = -sd->Ng;
sd->N = -sd->N;
#ifdef __DPDU__
sd->dPdu = -sd->dPdu;
sd->dPdv = -sd->dPdv;
#endif
}
}
#ifdef __RAY_DIFFERENTIALS__
/* no ray differentials here yet */
sd->dP = differential3_zero();
sd->dI = differential3_zero();
sd->du = differential_zero();
sd->dv = differential_zero();
#endif
}
/* ShaderData setup for displacement */
ccl_device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd,
int object, int prim, float u, float v)
{
float3 P, Ng, I = make_float3(0.0f, 0.0f, 0.0f);
int shader;
triangle_point_normal(kg, object, prim, u, v, &P, &Ng, &shader);
/* force smooth shading for displacement */
shader |= SHADER_SMOOTH_NORMAL;
shader_setup_from_sample(kg, sd,
P, Ng, I,
shader, object, prim,
u, v, 0.0f, 0.5f,
!(kernel_tex_fetch(__object_flag, object) & SD_OBJECT_TRANSFORM_APPLIED),
LAMP_NONE);
}
/* ShaderData setup from ray into background */
ccl_device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
/* vectors */
sd->P = ray->D;
sd->N = -ray->D;
sd->Ng = -ray->D;
sd->I = -ray->D;
sd->shader = kernel_data.background.surface_shader;
sd->flag = kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).flags;
sd->object_flag = 0;
sd->time = ray->time;
sd->ray_length = 0.0f;
#ifdef __INSTANCING__
sd->object = PRIM_NONE;
#endif
sd->lamp = LAMP_NONE;
sd->prim = PRIM_NONE;
#ifdef __UV__
sd->u = 0.0f;
sd->v = 0.0f;
#endif
#ifdef __DPDU__
/* dPdu/dPdv */
sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif
#ifdef __RAY_DIFFERENTIALS__
/* differentials */
sd->dP = ray->dD;
differential_incoming(&sd->dI, sd->dP);
sd->du = differential_zero();
sd->dv = differential_zero();
#endif
}
/* ShaderData setup from point inside volume */
#ifdef __VOLUME__
ccl_device_inline void shader_setup_from_volume(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
/* vectors */
sd->P = ray->P;
sd->N = -ray->D;
sd->Ng = -ray->D;
sd->I = -ray->D;
sd->shader = SHADER_NONE;
sd->flag = 0;
sd->object_flag = 0;
sd->time = ray->time;
sd->ray_length = 0.0f; /* todo: can we set this to some useful value? */
# ifdef __INSTANCING__
sd->object = PRIM_NONE; /* todo: fill this for texture coordinates */
# endif
sd->lamp = LAMP_NONE;
sd->prim = PRIM_NONE;
sd->type = PRIMITIVE_NONE;
# ifdef __UV__
sd->u = 0.0f;
sd->v = 0.0f;
# endif
# ifdef __DPDU__
/* dPdu/dPdv */
sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
# endif
# ifdef __RAY_DIFFERENTIALS__
/* differentials */
sd->dP = ray->dD;
differential_incoming(&sd->dI, sd->dP);
sd->du = differential_zero();
sd->dv = differential_zero();
# endif
/* for NDC coordinates */
sd->ray_P = ray->P;
sd->ray_dP = ray->dP;
}
#endif /* __VOLUME__ */
/* Merging */
#if defined(__BRANCHED_PATH__) || defined(__VOLUME__)
ccl_device_inline void shader_merge_closures(ShaderData *sd)
{
/* merge identical closures, better when we sample a single closure at a time */
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sci = &sd->closure[i];
for(int j = i + 1; j < sd->num_closure; j++) {
ShaderClosure *scj = &sd->closure[j];
if(sci->type != scj->type)
continue;
if(!bsdf_merge(sci, scj))
continue;
sci->weight += scj->weight;
sci->sample_weight += scj->sample_weight;
int size = sd->num_closure - (j+1);
if(size > 0) {
for(int k = 0; k < size; k++) {
scj[k] = scj[k+1];
}
}
sd->num_closure--;
kernel_assert(sd->num_closure >= 0);
j--;
}
}
}
#endif /* __BRANCHED_PATH__ || __VOLUME__ */
/* Defensive sampling. */
ccl_device_inline void shader_prepare_closures(ShaderData *sd,
ccl_addr_space PathState *state)
{
/* We can likely also do defensive sampling at deeper bounces, particularly
* for cases like a perfect mirror but possibly also others. This will need
* a good heuristic. */
if(state->bounce + state->transparent_bounce == 0 && sd->num_closure > 1) {
float sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sum += sc->sample_weight;
}
}
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
}
}
}
}
/* BSDF */
ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, ShaderData *sd, const float3 omega_in, float *pdf,
const ShaderClosure *skip_sc, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
/* this is the veach one-sample model with balance heuristic, some pdf
* factors drop out when using balance heuristic weighting */
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(sc != skip_sc && CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);
if(bsdf_pdf != 0.0f) {
bsdf_eval_accum(result_eval, sc->type, eval*sc->weight, 1.0f);
sum_pdf += bsdf_pdf*sc->sample_weight;
}
sum_sample_weight += sc->sample_weight;
}
}
*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}
#ifdef __BRANCHED_PATH__
ccl_device_inline void _shader_bsdf_multi_eval_branched(KernelGlobals *kg,
ShaderData *sd,
const float3 omega_in,
BsdfEval *result_eval,
float light_pdf,
bool use_mis)
{
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);
if(bsdf_pdf != 0.0f) {
float mis_weight = use_mis? power_heuristic(light_pdf, bsdf_pdf): 1.0f;
bsdf_eval_accum(result_eval,
sc->type,
eval * sc->weight,
mis_weight);
}
}
}
}
#endif /* __BRANCHED_PATH__ */
#ifndef __KERNEL_CUDA__
ccl_device
#else
ccl_device_inline
#endif
void shader_bsdf_eval(KernelGlobals *kg,
ShaderData *sd,
const float3 omega_in,
BsdfEval *eval,
float light_pdf,
bool use_mis)
{
bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass);
#ifdef __BRANCHED_PATH__
if(kernel_data.integrator.branched)
_shader_bsdf_multi_eval_branched(kg, sd, omega_in, eval, light_pdf, use_mis);
else
#endif
{
float pdf;
_shader_bsdf_multi_eval(kg, sd, omega_in, &pdf, NULL, eval, 0.0f, 0.0f);
if(use_mis) {
float weight = power_heuristic(light_pdf, pdf);
bsdf_eval_mis(eval, weight);
}
}
}
ccl_device_inline const ShaderClosure *shader_bsdf_pick(ShaderData *sd,
float *randu)
{
/* Note the sampling here must match shader_bssrdf_pick,
* since we reuse the same random number. */
int sampled = 0;
if(sd->num_closure > 1) {
/* Pick a BSDF or based on sample weights. */
float sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sum += sc->sample_weight;
}
}
float r = (*randu)*sum;
float partial_sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
float next_sum = partial_sum + sc->sample_weight;
if(r < next_sum) {
sampled = i;
/* Rescale to reuse for direction sample, to better
* preserve stratifaction. */
*randu = (r - partial_sum) / sc->sample_weight;
break;
}
partial_sum = next_sum;
}
}
}
const ShaderClosure *sc = &sd->closure[sampled];
return CLOSURE_IS_BSDF(sc->type)? sc: NULL;
}
ccl_device_inline const ShaderClosure *shader_bssrdf_pick(ShaderData *sd,
ccl_addr_space float3 *throughput,
float *randu)
{
/* Note the sampling here must match shader_bsdf_pick,
* since we reuse the same random number. */
int sampled = 0;
if(sd->num_closure > 1) {
/* Pick a BSDF or BSSRDF or based on sample weights. */
float sum_bsdf = 0.0f;
float sum_bssrdf = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
sum_bsdf += sc->sample_weight;
}
else if(CLOSURE_IS_BSSRDF(sc->type)) {
sum_bssrdf += sc->sample_weight;
}
}
float r = (*randu)*(sum_bsdf + sum_bssrdf);
float partial_sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
float next_sum = partial_sum + sc->sample_weight;
if(r < next_sum) {
if(CLOSURE_IS_BSDF(sc->type)) {
*throughput *= (sum_bsdf + sum_bssrdf) / sum_bsdf;
return NULL;
}
else {
*throughput *= (sum_bsdf + sum_bssrdf) / sum_bssrdf;
sampled = i;
/* Rescale to reuse for direction sample, to better
* preserve stratifaction. */
*randu = (r - partial_sum) / sc->sample_weight;
break;
}
}
partial_sum = next_sum;
}
}
}
const ShaderClosure *sc = &sd->closure[sampled];
return CLOSURE_IS_BSSRDF(sc->type)? sc: NULL;
}
ccl_device_inline int shader_bsdf_sample(KernelGlobals *kg,
ShaderData *sd,
float randu, float randv,
BsdfEval *bsdf_eval,
float3 *omega_in,
differential3 *domega_in,
float *pdf)
{
const ShaderClosure *sc = shader_bsdf_pick(sd, &randu);
if(sc == NULL) {
*pdf = 0.0f;
return LABEL_NONE;
}
/* BSSRDF should already have been handled elsewhere. */
kernel_assert(CLOSURE_IS_BSDF(sc->type));
int label;
float3 eval;
*pdf = 0.0f;
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f) {
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
if(sd->num_closure > 1) {
float sweight = sc->sample_weight;
_shader_bsdf_multi_eval(kg, sd, *omega_in, pdf, sc, bsdf_eval, *pdf*sweight, sweight);
}
}
return label;
}
ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, ShaderData *sd,
const ShaderClosure *sc, float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
int label;
float3 eval;
*pdf = 0.0f;
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f)
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
return label;
}
ccl_device float shader_bsdf_average_roughness(ShaderData *sd)
{
float roughness = 0.0f;
float sum_weight = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
/* sqrt once to undo the squaring from multiplying roughness on the
* two axes, and once for the squared roughness convention. */
float weight = fabsf(average(sc->weight));
roughness += weight * sqrtf(safe_sqrtf(bsdf_get_roughness_squared(sc)));
sum_weight += weight;
}
}
return (sum_weight > 0.0f) ? roughness / sum_weight : 0.0f;
}
ccl_device void shader_bsdf_blur(KernelGlobals *kg, ShaderData *sd, float roughness)
{
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type))
bsdf_blur(kg, sc, roughness);
}
}
ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg, const ShaderData *sd)
{
if(sd->flag & SD_HAS_ONLY_VOLUME) {
return make_float3(1.0f, 1.0f, 1.0f);
}
else if(sd->flag & SD_TRANSPARENT) {
return sd->closure_transparent_extinction;
}
else {
return make_float3(0.0f, 0.0f, 0.0f);
}
}
ccl_device void shader_bsdf_disable_transparency(KernelGlobals *kg, ShaderData *sd)
{
if(sd->flag & SD_TRANSPARENT) {
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
sc->sample_weight = 0.0f;
sc->weight = make_float3(0.0f, 0.0f, 0.0f);
}
}
sd->flag &= ~SD_TRANSPARENT;
}
}
ccl_device float3 shader_bsdf_alpha(KernelGlobals *kg, ShaderData *sd)
{
float3 alpha = make_float3(1.0f, 1.0f, 1.0f) - shader_bsdf_transparency(kg, sd);
alpha = max(alpha, make_float3(0.0f, 0.0f, 0.0f));
alpha = min(alpha, make_float3(1.0f, 1.0f, 1.0f));
return alpha;
}
ccl_device float3 shader_bsdf_diffuse(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_glossy(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_transmission(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_subsurface(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type) || CLOSURE_IS_BSDF_BSSRDF(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_average_normal(KernelGlobals *kg, ShaderData *sd)
{
float3 N = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
N += sc->N*fabsf(average(sc->weight));
}
return (is_zero(N))? sd->N : normalize(N);
}
ccl_device float3 shader_bsdf_ao(KernelGlobals *kg, ShaderData *sd, float ao_factor, float3 *N_)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
float3 N = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
eval += sc->weight*ao_factor;
N += bsdf->N*fabsf(average(sc->weight));
}
}
*N_ = (is_zero(N))? sd->N : normalize(N);
return eval;
}
#ifdef __SUBSURFACE__
ccl_device float3 shader_bssrdf_sum(ShaderData *sd, float3 *N_, float *texture_blur_)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
float3 N = make_float3(0.0f, 0.0f, 0.0f);
float texture_blur = 0.0f, weight_sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type)) {
const Bssrdf *bssrdf = (const Bssrdf*)sc;
float avg_weight = fabsf(average(sc->weight));
N += bssrdf->N*avg_weight;
eval += sc->weight;
texture_blur += bssrdf->texture_blur*avg_weight;
weight_sum += avg_weight;
}
}
if(N_)
*N_ = (is_zero(N))? sd->N: normalize(N);
if(texture_blur_)
*texture_blur_ = safe_divide(texture_blur, weight_sum);
return eval;
}
#endif /* __SUBSURFACE__ */
/* Emission */
ccl_device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
{
if(sd->flag & SD_EMISSION) {
return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
}
else {
return make_float3(0.0f, 0.0f, 0.0f);
}
}
/* Holdout */
ccl_device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
{
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_HOLDOUT(sc->type))
weight += sc->weight;
}
return weight;
}
/* Surface Evaluation */
ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
ccl_addr_space PathState *state, int path_flag)
{
/* If path is being terminated, we are tracing a shadow ray or evaluating
* emission, then we don't need to store closures. The emission and shadow
* shader data also do not have a closure array to save GPU memory. */
int max_closures;
if(path_flag & (PATH_RAY_TERMINATE|PATH_RAY_SHADOW|PATH_RAY_EMISSION)) {
max_closures = 0;
}
else {
max_closures = kernel_data.integrator.max_closures;
}
sd->num_closure = 0;
sd->num_closure_left = max_closures;
#ifdef __OSL__
if(kg->osl)
OSLShader::eval_surface(kg, sd, state, path_flag);
else
#endif
{
#ifdef __SVM__
svm_eval_nodes(kg, sd, state, SHADER_TYPE_SURFACE, path_flag);
#else
DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd,
sizeof(DiffuseBsdf),
make_float3(0.8f, 0.8f, 0.8f));
if(bsdf != NULL) {
bsdf->N = sd->N;
sd->flag |= bsdf_diffuse_setup(bsdf);
}
#endif
}
if(sd->flag & SD_BSDF_NEEDS_LCG) {
sd->lcg_state = lcg_state_init_addrspace(state, 0xb4bc3953);
}
}
/* Background Evaluation */
ccl_device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd,
ccl_addr_space PathState *state, int path_flag)
{
sd->num_closure = 0;
sd->num_closure_left = 0;
#ifdef __SVM__
# ifdef __OSL__
if(kg->osl) {
OSLShader::eval_background(kg, sd, state, path_flag);
}
else
# endif /* __OSL__ */
{
svm_eval_nodes(kg, sd, state, SHADER_TYPE_SURFACE, path_flag);
}
if(sd->flag & SD_EMISSION) {
return sd->closure_emission_background;
}
else {
return make_float3(0.0f, 0.0f, 0.0f);
}
#else /* __SVM__ */
return make_float3(0.8f, 0.8f, 0.8f);
#endif /* __SVM__ */
}
/* Volume */
#ifdef __VOLUME__
ccl_device_inline void _shader_volume_phase_multi_eval(const ShaderData *sd, const float3 omega_in, float *pdf,
int skip_phase, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
for(int i = 0; i < sd->num_closure; i++) {
if(i == skip_phase)
continue;
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_PHASE(sc->type)) {
float phase_pdf = 0.0f;
float3 eval = volume_phase_eval(sd, sc, omega_in, &phase_pdf);
if(phase_pdf != 0.0f) {
bsdf_eval_accum(result_eval, sc->type, eval, 1.0f);
sum_pdf += phase_pdf*sc->sample_weight;
}
sum_sample_weight += sc->sample_weight;
}
}
*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}
ccl_device void shader_volume_phase_eval(KernelGlobals *kg, const ShaderData *sd,
const float3 omega_in, BsdfEval *eval, float *pdf)
{
bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass);
_shader_volume_phase_multi_eval(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
}
ccl_device int shader_volume_phase_sample(KernelGlobals *kg, const ShaderData *sd,
float randu, float randv, BsdfEval *phase_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
int sampled = 0;
if(sd->num_closure > 1) {
/* pick a phase closure based on sample weights */
float sum = 0.0f;
for(sampled = 0; sampled < sd->num_closure; sampled++) {
const ShaderClosure *sc = &sd->closure[sampled];
if(CLOSURE_IS_PHASE(sc->type))
sum += sc->sample_weight;
}
float r = randu*sum;
float partial_sum = 0.0f;
for(sampled = 0; sampled < sd->num_closure; sampled++) {
const ShaderClosure *sc = &sd->closure[sampled];
if(CLOSURE_IS_PHASE(sc->type)) {
float next_sum = partial_sum + sc->sample_weight;
if(r <= next_sum) {
/* Rescale to reuse for BSDF direction sample. */
randu = (r - partial_sum) / sc->sample_weight;
break;
}
partial_sum = next_sum;
}
}
if(sampled == sd->num_closure) {
*pdf = 0.0f;
return LABEL_NONE;
}
}
/* todo: this isn't quite correct, we don't weight anisotropy properly
* depending on color channels, even if this is perhaps not a common case */
const ShaderClosure *sc = &sd->closure[sampled];
int label;
float3 eval;
*pdf = 0.0f;
label = volume_phase_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f) {
bsdf_eval_init(phase_eval, sc->type, eval, kernel_data.film.use_light_pass);
}
return label;
}
ccl_device int shader_phase_sample_closure(KernelGlobals *kg, const ShaderData *sd,
const ShaderClosure *sc, float randu, float randv, BsdfEval *phase_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
int label;
float3 eval;
*pdf = 0.0f;
label = volume_phase_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f)
bsdf_eval_init(phase_eval, sc->type, eval, kernel_data.film.use_light_pass);
return label;
}
/* Volume Evaluation */
ccl_device_inline void shader_eval_volume(KernelGlobals *kg,
ShaderData *sd,
ccl_addr_space PathState *state,
ccl_addr_space VolumeStack *stack,
int path_flag)
{
/* If path is being terminated, we are tracing a shadow ray or evaluating
* emission, then we don't need to store closures. The emission and shadow
* shader data also do not have a closure array to save GPU memory. */
int max_closures;
if(path_flag & (PATH_RAY_TERMINATE|PATH_RAY_SHADOW|PATH_RAY_EMISSION)) {
max_closures = 0;
}
else {
max_closures = kernel_data.integrator.max_closures;
}
/* reset closures once at the start, we will be accumulating the closures
* for all volumes in the stack into a single array of closures */
sd->num_closure = 0;
sd->num_closure_left = max_closures;
sd->flag = 0;
sd->object_flag = 0;
for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
/* setup shaderdata from stack. it's mostly setup already in
* shader_setup_from_volume, this switching should be quick */
sd->object = stack[i].object;
sd->lamp = LAMP_NONE;
sd->shader = stack[i].shader;
sd->flag &= ~SD_SHADER_FLAGS;
sd->flag |= kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).flags;
sd->object_flag &= ~SD_OBJECT_FLAGS;
if(sd->object != OBJECT_NONE) {
sd->object_flag |= kernel_tex_fetch(__object_flag, sd->object);
#ifdef __OBJECT_MOTION__
/* todo: this is inefficient for motion blur, we should be
* caching matrices instead of recomputing them each step */
shader_setup_object_transforms(kg, sd, sd->time);
#endif
}
/* evaluate shader */
#ifdef __SVM__
# ifdef __OSL__
if(kg->osl) {
OSLShader::eval_volume(kg, sd, state, path_flag);
}
else
# endif
{
svm_eval_nodes(kg, sd, state, SHADER_TYPE_VOLUME, path_flag);
}
#endif
/* merge closures to avoid exceeding number of closures limit */
if(i > 0)
shader_merge_closures(sd);
}
}
#endif /* __VOLUME__ */
/* Displacement Evaluation */
ccl_device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state)
{
sd->num_closure = 0;
sd->num_closure_left = 0;
/* this will modify sd->P */
#ifdef __SVM__
# ifdef __OSL__
if(kg->osl)
OSLShader::eval_displacement(kg, sd, state);
else
# endif
{
svm_eval_nodes(kg, sd, state, SHADER_TYPE_DISPLACEMENT, 0);
}
#endif
}
/* Transparent Shadows */
#ifdef __TRANSPARENT_SHADOWS__
ccl_device bool shader_transparent_shadow(KernelGlobals *kg, Intersection *isect)
{
int prim = kernel_tex_fetch(__prim_index, isect->prim);
int shader = 0;
#ifdef __HAIR__
if(kernel_tex_fetch(__prim_type, isect->prim) & PRIMITIVE_ALL_TRIANGLE) {
#endif
shader = kernel_tex_fetch(__tri_shader, prim);
#ifdef __HAIR__
}
else {
float4 str = kernel_tex_fetch(__curves, prim);
shader = __float_as_int(str.z);
}
#endif
int flag = kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).flags;
return (flag & SD_HAS_TRANSPARENT_SHADOW) != 0;
}
#endif /* __TRANSPARENT_SHADOWS__ */
ccl_device float shader_cryptomatte_id(KernelGlobals *kg, int shader)
{
return kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).cryptomatte_id;
}
CCL_NAMESPACE_END